探索在定位操纵任务中学习感官-运动权变的显著性

Robotics Pub Date : 2024-04-01 DOI:10.3390/robotics13040058
E. Stefanini, G. Lentini, G. Grioli, M. G. Catalano, A. Bicchi
{"title":"探索在定位操纵任务中学习感官-运动权变的显著性","authors":"E. Stefanini, G. Lentini, G. Grioli, M. G. Catalano, A. Bicchi","doi":"10.3390/robotics13040058","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They have been used to design control and planning algorithms for robots capable of interacting and adapting autonomously. However, enabling a robot to autonomously develop Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals. This framework leverages tools from Learning from Demonstrations to have the robot memorize various sensory phases and corresponding motor actions through an attention mechanism. This generates a metric in the perception space, used by the robot to determine which sensory-motor memory is contingent to the current context. The robot generalizes the memorized actions to adapt them to the present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of the framework.","PeriodicalId":506759,"journal":{"name":"Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Saliency for Learning Sensory-Motor Contingencies in Loco-Manipulation Tasks\",\"authors\":\"E. Stefanini, G. Lentini, G. Grioli, M. G. Catalano, A. Bicchi\",\"doi\":\"10.3390/robotics13040058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They have been used to design control and planning algorithms for robots capable of interacting and adapting autonomously. However, enabling a robot to autonomously develop Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals. This framework leverages tools from Learning from Demonstrations to have the robot memorize various sensory phases and corresponding motor actions through an attention mechanism. This generates a metric in the perception space, used by the robot to determine which sensory-motor memory is contingent to the current context. The robot generalizes the memorized actions to adapt them to the present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of the framework.\",\"PeriodicalId\":506759,\"journal\":{\"name\":\"Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics13040058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13040058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一个框架,让机器人从人类的演示中学习多种感官-运动权变,并再现这些权变。感官-运动权变是一个描述动物和人类与环境相关的智能行为的概念。它们已被用于为能够自主互动和适应的机器人设计控制和规划算法。然而,由于行动和感知信号的复杂性,让机器人自主开发感知-运动权变具有挑战性。本框架利用从演示中学习的工具,让机器人通过注意力机制记忆各种感官阶段和相应的运动动作。这将在感知空间中生成一个度量,机器人可利用该度量来确定哪些感官-运动记忆与当前情境相关。机器人对记忆中的动作进行概括,使其适应当前的感知。这一过程创建了一个连续感觉-运动权变的离散网格,可以控制机器人完成定位操纵任务。在一个带抓手的七人协作机械臂和一个移动机械手上进行的实验证明了该框架的功能性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Saliency for Learning Sensory-Motor Contingencies in Loco-Manipulation Tasks
The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They have been used to design control and planning algorithms for robots capable of interacting and adapting autonomously. However, enabling a robot to autonomously develop Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals. This framework leverages tools from Learning from Demonstrations to have the robot memorize various sensory phases and corresponding motor actions through an attention mechanism. This generates a metric in the perception space, used by the robot to determine which sensory-motor memory is contingent to the current context. The robot generalizes the memorized actions to adapt them to the present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of the framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to Walk with Adaptive Feet Nonbinary Voices for Digital Assistants—An Investigation of User Perceptions and Gender Stereotypes The Future of Intelligent Healthcare: A Systematic Analysis and Discussion on the Integration and Impact of Robots Using Large Language Models for Healthcare A Reconfigurable UGV for Modular and Flexible Inspection Tasks in Nuclear Sites Large-Scale Urban Traffic Management Using Zero-Shot Knowledge Transfer in Multi-Agent Reinforcement Learning for Intersection Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1