改进的蜣螂优化器、多头注意力和混合深度学习算法在中国宁夏地区地下水深度预测中的应用

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric and Oceanic Science Letters Pub Date : 2025-01-01 DOI:10.1016/j.aosl.2024.100497
Jiarui Cai , Bo Sun , Huijun Wang , Yi Zheng , Siyu Zhou , Huixin Li , Yanyan Huang , Peishu Zong
{"title":"改进的蜣螂优化器、多头注意力和混合深度学习算法在中国宁夏地区地下水深度预测中的应用","authors":"Jiarui Cai ,&nbsp;Bo Sun ,&nbsp;Huijun Wang ,&nbsp;Yi Zheng ,&nbsp;Siyu Zhou ,&nbsp;Huixin Li ,&nbsp;Yanyan Huang ,&nbsp;Peishu Zong","doi":"10.1016/j.aosl.2024.100497","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the lack of accurate data and complex parameterization, the prediction of groundwater depth is a challenge for numerical models. Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas. In this study, two new models are applied to the prediction of groundwater depth in the Ningxia area, China. The two models combine the improved dung beetle optimizer (DBO) algorithm with two deep learning models: The Multi-head Attention–Convolution Neural Network–Long Short Term Memory networks (MH-CNN-LSTM) and the Multi-head Attention–Convolution Neural Network–Gated Recurrent Unit (MH-CNN-GRU). The models with DBO show better prediction performance, with larger <em>R</em> (correlation coefficient), RPD (residual prediction deviation), and lower RMSE (root-mean-square error). Compared with the models with the original DBO, the <em>R</em> and RPD of models with the improved DBO increase by over 1.5%, and the RMSE decreases by over 1.8%, indicating better prediction results. In addition, compared with the multiple linear regression model, a traditional statistical model, deep learning models have better prediction performance.</div><div>摘要</div><div>本研究将两个新模型应用于位于中国西北干旱半干旱区的宁夏地区地下水深度预测. 这两个模型将改进的蜣螂优化 (DBO) 算法与两个深度学习模型相结合, 即多头注意力-卷积神经网络-长短期记忆网络和多头注意力-回旋神经网络-门控递归单元. 带有DBO的模型预测结果表现出更大的相关系数 (R) , 残差预测偏差 (RPD) 和较低的均方根误差 (RMSE) , 预测结果更好. 此外, 与DBO模型相比, 改进后的DBO模型的R和RPD增加了1.5%以上, RMSE降低了1.8%以上, 表明预测结果更好. 与传统的统计模型多元线性回归模型相比, 深度学习模型具有更好的预测性能.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 1","pages":"Article 100497"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the improved dung beetle optimizer, muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area, China\",\"authors\":\"Jiarui Cai ,&nbsp;Bo Sun ,&nbsp;Huijun Wang ,&nbsp;Yi Zheng ,&nbsp;Siyu Zhou ,&nbsp;Huixin Li ,&nbsp;Yanyan Huang ,&nbsp;Peishu Zong\",\"doi\":\"10.1016/j.aosl.2024.100497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the lack of accurate data and complex parameterization, the prediction of groundwater depth is a challenge for numerical models. Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas. In this study, two new models are applied to the prediction of groundwater depth in the Ningxia area, China. The two models combine the improved dung beetle optimizer (DBO) algorithm with two deep learning models: The Multi-head Attention–Convolution Neural Network–Long Short Term Memory networks (MH-CNN-LSTM) and the Multi-head Attention–Convolution Neural Network–Gated Recurrent Unit (MH-CNN-GRU). The models with DBO show better prediction performance, with larger <em>R</em> (correlation coefficient), RPD (residual prediction deviation), and lower RMSE (root-mean-square error). Compared with the models with the original DBO, the <em>R</em> and RPD of models with the improved DBO increase by over 1.5%, and the RMSE decreases by over 1.8%, indicating better prediction results. In addition, compared with the multiple linear regression model, a traditional statistical model, deep learning models have better prediction performance.</div><div>摘要</div><div>本研究将两个新模型应用于位于中国西北干旱半干旱区的宁夏地区地下水深度预测. 这两个模型将改进的蜣螂优化 (DBO) 算法与两个深度学习模型相结合, 即多头注意力-卷积神经网络-长短期记忆网络和多头注意力-回旋神经网络-门控递归单元. 带有DBO的模型预测结果表现出更大的相关系数 (R) , 残差预测偏差 (RPD) 和较低的均方根误差 (RMSE) , 预测结果更好. 此外, 与DBO模型相比, 改进后的DBO模型的R和RPD增加了1.5%以上, RMSE降低了1.8%以上, 表明预测结果更好. 与传统的统计模型多元线性回归模型相比, 深度学习模型具有更好的预测性能.</div></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"18 1\",\"pages\":\"Article 100497\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283424000461\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000461","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of the improved dung beetle optimizer, muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area, China
Due to the lack of accurate data and complex parameterization, the prediction of groundwater depth is a challenge for numerical models. Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas. In this study, two new models are applied to the prediction of groundwater depth in the Ningxia area, China. The two models combine the improved dung beetle optimizer (DBO) algorithm with two deep learning models: The Multi-head Attention–Convolution Neural Network–Long Short Term Memory networks (MH-CNN-LSTM) and the Multi-head Attention–Convolution Neural Network–Gated Recurrent Unit (MH-CNN-GRU). The models with DBO show better prediction performance, with larger R (correlation coefficient), RPD (residual prediction deviation), and lower RMSE (root-mean-square error). Compared with the models with the original DBO, the R and RPD of models with the improved DBO increase by over 1.5%, and the RMSE decreases by over 1.8%, indicating better prediction results. In addition, compared with the multiple linear regression model, a traditional statistical model, deep learning models have better prediction performance.
摘要
本研究将两个新模型应用于位于中国西北干旱半干旱区的宁夏地区地下水深度预测. 这两个模型将改进的蜣螂优化 (DBO) 算法与两个深度学习模型相结合, 即多头注意力-卷积神经网络-长短期记忆网络和多头注意力-回旋神经网络-门控递归单元. 带有DBO的模型预测结果表现出更大的相关系数 (R) , 残差预测偏差 (RPD) 和较低的均方根误差 (RMSE) , 预测结果更好. 此外, 与DBO模型相比, 改进后的DBO模型的R和RPD增加了1.5%以上, RMSE降低了1.8%以上, 表明预测结果更好. 与传统的统计模型多元线性回归模型相比, 深度学习模型具有更好的预测性能.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
期刊最新文献
Interannual variability of boreal summer intraseasonal oscillation over the northwestern Pacific influenced by the Pacific Meridional Mode Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing Satellite remote sensing reveals overwhelming recovery of forest from disturbances in Asia Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean Increase in the variability of terrestrial carbon uptake in response to enhanced future ENSO modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1