磁流体力学在电解和湍流研究中的应用

I. T. Selezov, V. N. Zaichenko
{"title":"磁流体力学在电解和湍流研究中的应用","authors":"I. T. Selezov,&nbsp;V. N. Zaichenko","doi":"10.3103/S1068375524020108","DOIUrl":null,"url":null,"abstract":"<p>The equations of magnetohydrodynamics (MHD) are presented as continual modeling for slow motions. The original equations of the MHD environment are linearized, reduced, and applied to the analysis of environments characterized by the phenomena of electrolysis and turbulence. A continual approach for electrolysis and turbulence is presented, and the real-life ongoing studies are considering local models. The formulation of the problem and its analysis are presented as the density of the MHD-field decreases from a flat wall. Experimental studies with respect to propulsion devices in sea water are characterized.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"256 - 259"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamics with Application to the Study of Electrolysis and Turbulence\",\"authors\":\"I. T. Selezov,&nbsp;V. N. Zaichenko\",\"doi\":\"10.3103/S1068375524020108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The equations of magnetohydrodynamics (MHD) are presented as continual modeling for slow motions. The original equations of the MHD environment are linearized, reduced, and applied to the analysis of environments characterized by the phenomena of electrolysis and turbulence. A continual approach for electrolysis and turbulence is presented, and the real-life ongoing studies are considering local models. The formulation of the problem and its analysis are presented as the density of the MHD-field decreases from a flat wall. Experimental studies with respect to propulsion devices in sea water are characterized.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 2\",\"pages\":\"256 - 259\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524020108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524020108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 磁流体力学(MHD)方程是作为慢速运动的连续模型提出的。将 MHD 环境的原始方程线性化、简化,并应用于以电解和湍流现象为特征的环境分析。介绍了电解和湍流的连续方法,正在进行的实际研究考虑了局部模型。当 MHD 场的密度从平壁开始下降时,将介绍问题的表述及其分析。还介绍了有关海水中推进装置的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetohydrodynamics with Application to the Study of Electrolysis and Turbulence

The equations of magnetohydrodynamics (MHD) are presented as continual modeling for slow motions. The original equations of the MHD environment are linearized, reduced, and applied to the analysis of environments characterized by the phenomena of electrolysis and turbulence. A continual approach for electrolysis and turbulence is presented, and the real-life ongoing studies are considering local models. The formulation of the problem and its analysis are presented as the density of the MHD-field decreases from a flat wall. Experimental studies with respect to propulsion devices in sea water are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Calculation of the Main Averaged Characteristics of the Drift of Lone Electrons in a Metal Conductor with a Conduction Current Autonomous Devices with an Evaporation–Condensation Cycle for Thermal Control of Heat-Loaded Equipment Experimental Method and Software Instruments for Sliding Tribosystem Dynamic Behavior Research Investigating Ultrasonically Assisted CdxCryFe3 – (x + y)O4 for Its Electrochemical Efficacy towards Water Electrolysis, Ethanol and Methanol Oxidation The Effect of Preparation Conditions on the Characteristics of Anodized Copper Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1