社交网络的潜在认知结构

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2024-04-25 DOI:10.1017/nws.2024.7
Izabel Aguiar, Johan Ugander
{"title":"社交网络的潜在认知结构","authors":"Izabel Aguiar, Johan Ugander","doi":"10.1017/nws.2024.7","DOIUrl":null,"url":null,"abstract":"When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question, <jats:italic>Can we identify people who share the same heuristics?</jats:italic> In this work, we propose a method for identifying <jats:italic>cognitive structure</jats:italic> across multiple network perceptions, analogous to how community detection aims to identify <jats:italic>social structure</jats:italic> in a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory of <jats:italic>social cognition</jats:italic> by identifying individuals who share <jats:italic>relational schema</jats:italic>. In addition to modeling cognitively <jats:italic>independent</jats:italic>, <jats:italic>dependent</jats:italic>, and <jats:italic>redundant</jats:italic> networks, we propose a specific model instance and related statistical test for testing when there is <jats:italic>social-cognitive agreement</jats:italic> in a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The latent cognitive structures of social networks\",\"authors\":\"Izabel Aguiar, Johan Ugander\",\"doi\":\"10.1017/nws.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question, <jats:italic>Can we identify people who share the same heuristics?</jats:italic> In this work, we propose a method for identifying <jats:italic>cognitive structure</jats:italic> across multiple network perceptions, analogous to how community detection aims to identify <jats:italic>social structure</jats:italic> in a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory of <jats:italic>social cognition</jats:italic> by identifying individuals who share <jats:italic>relational schema</jats:italic>. In addition to modeling cognitively <jats:italic>independent</jats:italic>, <jats:italic>dependent</jats:italic>, and <jats:italic>redundant</jats:italic> networks, we propose a specific model instance and related statistical test for testing when there is <jats:italic>social-cognitive agreement</jats:italic> in a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2024.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当人们被要求回忆他们的社交网络时,理论和实证研究告诉我们,他们依赖于捷径或启发式方法。认知社会结构(CSS)是多层社会网络,其中每一层都对应着个人对网络的认知。由于人们对同一网络有多种感知,因此 CSS 包含了有关这些启发式方法如何体现的丰富信息,从而引发了这样一个问题:我们能否识别出拥有相同启发式方法的人?在这项工作中,我们提出了一种方法来识别多个网络感知中的认知结构,类似于社区检测旨在识别网络中的社会结构。为了同时对潜在社会结构和认知结构进行建模,我们将 CSS 作为三维张量进行研究,采用低秩非负塔克分解(NNTuck)来近似 CSS--这一过程与从此类数据中估计多层随机块模型(SBM)密切相关。我们建议将由此产生的潜在认知空间作为社会认知社会学理论的操作化,识别出共享关系图式的个体。除了对认知独立网络、依赖网络和冗余网络进行建模外,我们还提出了一个特定的模型实例和相关的统计检验,用于测试网络中是否存在社会认知一致:即社会结构和认知结构是否等同。我们使用我们的方法分析了四种不同的 CSS,并深入探讨了这些网络的潜在认知结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The latent cognitive structures of social networks
When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question, Can we identify people who share the same heuristics? In this work, we propose a method for identifying cognitive structure across multiple network perceptions, analogous to how community detection aims to identify social structure in a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory of social cognition by identifying individuals who share relational schema. In addition to modeling cognitively independent, dependent, and redundant networks, we propose a specific model instance and related statistical test for testing when there is social-cognitive agreement in a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1