陶瓷与银涂层钛的结合--理论与实验的综合研究

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-04-27 DOI:10.1002/jbm.b.35407
Vesa Vuorinen, Reijo Kouhia, Mauno Könönen, Jorma K. Kivilahti
{"title":"陶瓷与银涂层钛的结合--理论与实验的综合研究","authors":"Vesa Vuorinen,&nbsp;Reijo Kouhia,&nbsp;Mauno Könönen,&nbsp;Jorma K. Kivilahti","doi":"10.1002/jbm.b.35407","DOIUrl":null,"url":null,"abstract":"<p>It would be very beneficial to have a method for joining of ceramics to titanium reliably. Although several techniques have been developed and tested to prevent extensive interfacial chemical reactions in titanium-ceramic systems, the main problem of the inherent brittleness of interfaces was still unsolved. To overcome this problem also in dental applications, we decided to make use of an interlayer material that needs to meet the following requirements: First, it has to be biocompatible, second, it should not melt below the bonding temperatures, and third, it should not react too strongly with titanium, so that its plasticity will be maintained. Considering possible material options only the metals: gold, platinum, palladium, and silver, fulfill the first and second requirements. To find out—without an extensive experimental testing program—which of the four metals fulfills the third requirement best, the combined thermodynamic and reaction kinetic modeling was employed to evaluate how many and how thick reaction layers are formed between the interlayer metals and titanium. With the help of theoretical modeling, it was shown that silver fulfills the last requirement best. However, before starting to test experimentally the effect of the silver layer on the mechanical integrity of dental ceramic/Ag/Ti joints it was decided to make use of mechanical analysis of the three-point bending test, the result of which indicated that the silver layer increases significantly the bond strength of the joints. This result encouraged us to develop a new technique for plating silver on titanium. Subsequently, we executed numerous three-point bending tests, which demonstrated that silver-plated titanium-ceramic joints are much stronger than conventional titanium-ceramic joints. Hence, it can be concluded that the combined thermodynamic, reaction kinetic, and mechanical modeling method can also be a very valuable tool in medical research and development work.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35407","citationCount":"0","resultStr":"{\"title\":\"Bonding of ceramics to silver-coated titanium—A combined theoretical and experimental study\",\"authors\":\"Vesa Vuorinen,&nbsp;Reijo Kouhia,&nbsp;Mauno Könönen,&nbsp;Jorma K. Kivilahti\",\"doi\":\"10.1002/jbm.b.35407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It would be very beneficial to have a method for joining of ceramics to titanium reliably. Although several techniques have been developed and tested to prevent extensive interfacial chemical reactions in titanium-ceramic systems, the main problem of the inherent brittleness of interfaces was still unsolved. To overcome this problem also in dental applications, we decided to make use of an interlayer material that needs to meet the following requirements: First, it has to be biocompatible, second, it should not melt below the bonding temperatures, and third, it should not react too strongly with titanium, so that its plasticity will be maintained. Considering possible material options only the metals: gold, platinum, palladium, and silver, fulfill the first and second requirements. To find out—without an extensive experimental testing program—which of the four metals fulfills the third requirement best, the combined thermodynamic and reaction kinetic modeling was employed to evaluate how many and how thick reaction layers are formed between the interlayer metals and titanium. With the help of theoretical modeling, it was shown that silver fulfills the last requirement best. However, before starting to test experimentally the effect of the silver layer on the mechanical integrity of dental ceramic/Ag/Ti joints it was decided to make use of mechanical analysis of the three-point bending test, the result of which indicated that the silver layer increases significantly the bond strength of the joints. This result encouraged us to develop a new technique for plating silver on titanium. Subsequently, we executed numerous three-point bending tests, which demonstrated that silver-plated titanium-ceramic joints are much stronger than conventional titanium-ceramic joints. Hence, it can be concluded that the combined thermodynamic, reaction kinetic, and mechanical modeling method can also be a very valuable tool in medical research and development work.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35407\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35407\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35407","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

将陶瓷与钛可靠地连接在一起的方法是非常有益的。虽然已经开发并测试了几种技术来防止钛陶瓷系统中广泛的界面化学反应,但界面固有的脆性这一主要问题仍未得到解决。为了在牙科应用中克服这一问题,我们决定使用一种需要满足以下要求的夹层材料:首先,它必须具有生物兼容性;其次,它在粘合温度以下不会熔化;第三,它与钛的反应不会太强烈,以保持钛的可塑性。考虑到可能的材料选择,只有金、铂、钯和银等金属能满足第一和第二项要求。为了在不进行大量实验测试的情况下找出四种金属中哪一种最符合第三项要求,我们采用了热力学和反应动力学相结合的模型来评估层间金属和钛之间形成的反应层的数量和厚度。在理论模型的帮助下,结果表明银最符合最后一项要求。然而,在开始实验测试银层对牙科陶瓷/搀/钛接头机械完整性的影响之前,我们决定利用三点弯曲试验的机械分析,结果表明银层能显著提高接头的粘接强度。这一结果促使我们开发出一种在钛上镀银的新技术。随后,我们又进行了多次三点弯曲试验,结果表明镀银钛陶瓷接头的强度远远高于传统的钛陶瓷接头。因此,可以得出结论,热力学、反应动力学和机械建模相结合的方法在医学研究和开发工作中也是一种非常有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bonding of ceramics to silver-coated titanium—A combined theoretical and experimental study

It would be very beneficial to have a method for joining of ceramics to titanium reliably. Although several techniques have been developed and tested to prevent extensive interfacial chemical reactions in titanium-ceramic systems, the main problem of the inherent brittleness of interfaces was still unsolved. To overcome this problem also in dental applications, we decided to make use of an interlayer material that needs to meet the following requirements: First, it has to be biocompatible, second, it should not melt below the bonding temperatures, and third, it should not react too strongly with titanium, so that its plasticity will be maintained. Considering possible material options only the metals: gold, platinum, palladium, and silver, fulfill the first and second requirements. To find out—without an extensive experimental testing program—which of the four metals fulfills the third requirement best, the combined thermodynamic and reaction kinetic modeling was employed to evaluate how many and how thick reaction layers are formed between the interlayer metals and titanium. With the help of theoretical modeling, it was shown that silver fulfills the last requirement best. However, before starting to test experimentally the effect of the silver layer on the mechanical integrity of dental ceramic/Ag/Ti joints it was decided to make use of mechanical analysis of the three-point bending test, the result of which indicated that the silver layer increases significantly the bond strength of the joints. This result encouraged us to develop a new technique for plating silver on titanium. Subsequently, we executed numerous three-point bending tests, which demonstrated that silver-plated titanium-ceramic joints are much stronger than conventional titanium-ceramic joints. Hence, it can be concluded that the combined thermodynamic, reaction kinetic, and mechanical modeling method can also be a very valuable tool in medical research and development work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1