动态部分相关模型

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-04-01 DOI:10.1016/j.jeconom.2024.105747
Enzo D’Innocenzo , Andre Lucas
{"title":"动态部分相关模型","authors":"Enzo D’Innocenzo ,&nbsp;Andre Lucas","doi":"10.1016/j.jeconom.2024.105747","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model’s recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model’s static parameters. The new model outperforms benchmarks like the <span><math><mi>t</mi></math></span>-cDCC and the multivariate <span><math><mi>t</mi></math></span>-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to US stock returns.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 2","pages":"Article 105747"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624000939/pdfft?md5=dc2f2bebb5ae6409ca07d6f7a7554c94&pid=1-s2.0-S0304407624000939-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic partial correlation models\",\"authors\":\"Enzo D’Innocenzo ,&nbsp;Andre Lucas\",\"doi\":\"10.1016/j.jeconom.2024.105747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model’s recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model’s static parameters. The new model outperforms benchmarks like the <span><math><mi>t</mi></math></span>-cDCC and the multivariate <span><math><mi>t</mi></math></span>-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to US stock returns.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"241 2\",\"pages\":\"Article 105747\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304407624000939/pdfft?md5=dc2f2bebb5ae6409ca07d6f7a7554c94&pid=1-s2.0-S0304407624000939-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624000939\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000939","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在动态双变量部分相关模型递推的基础上,为动态条件相关矩阵引入了一个新的可扩展模型。通过利用该模型的递归结构和扰动随机递归方程理论,我们仅利用数据的二维切片条件,就建立了多变量环境下的静态性、遍历性和滤波可逆性。由此,我们建立了模型静态参数最大似然估计的一致性和渐近正态性。无论是在模拟还是在美国股票收益的样本内和样本外资产定价应用中,新模型都优于 t-cDCC 和多元 t-GAS 等基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic partial correlation models

We introduce a new scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model’s recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model’s static parameters. The new model outperforms benchmarks like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to US stock returns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1