非线性多模光纤中的光子气体量热计

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-04-29 DOI:10.1103/physrevx.14.021020
M. Ferraro, F. Mangini, F. O. Wu, M. Zitelli, D. N. Christodoulides, S. Wabnitz
{"title":"非线性多模光纤中的光子气体量热计","authors":"M. Ferraro, F. Mangini, F. O. Wu, M. Zitelli, D. N. Christodoulides, S. Wabnitz","doi":"10.1103/physrevx.14.021020","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that light propagating in a nonlinear, highly multimode system can thermalize in a manner totally analogous to that encountered in traditional statistical mechanics. At thermal equilibrium, the system’s entropy is at a maximum, in full accord with the second law of thermodynamics. In such arrangements, the entropy is extremized once the statistical power allocation among modes associated with this photon gas attains a Rayleigh-Jeans distribution that is fully characterized by an optical temperature <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> and a chemical potential <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>. However, it has been theoretically argued that the variables <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> represent actual thermodynamic forces that control the exchange of the respective conjugate quantities between two subsystems. In this work, we report, for the first time, optical calorimetric measurements in nonlinear multimode fibers, which unambiguously demonstrate that both the temperature <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> and the chemical potential <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> dictate the flow of their associated extensive quantities, i.e., the energy and the optical power. Specifically, we study the process of light thermalization associated with two orthogonally polarized laser beams. Our observations are enabled by recently developed techniques that allow one to judiciously multiplex/demultiplex the optical power within various mode groups. Our results indicate that because of photon-photon collisions, “heat” only flows from a hot to a cold photon gas subsystem—thus providing an unequivocal demonstration of the second law in such all-optical thermodynamic arrangements. In addition to being fundamental, our findings provide a new approach to manipulate laser beams using thermodynamic principles.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calorimetry of Photon Gases in Nonlinear Multimode Optical Fibers\",\"authors\":\"M. Ferraro, F. Mangini, F. O. Wu, M. Zitelli, D. N. Christodoulides, S. Wabnitz\",\"doi\":\"10.1103/physrevx.14.021020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that light propagating in a nonlinear, highly multimode system can thermalize in a manner totally analogous to that encountered in traditional statistical mechanics. At thermal equilibrium, the system’s entropy is at a maximum, in full accord with the second law of thermodynamics. In such arrangements, the entropy is extremized once the statistical power allocation among modes associated with this photon gas attains a Rayleigh-Jeans distribution that is fully characterized by an optical temperature <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> and a chemical potential <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>. However, it has been theoretically argued that the variables <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math> represent actual thermodynamic forces that control the exchange of the respective conjugate quantities between two subsystems. In this work, we report, for the first time, optical calorimetric measurements in nonlinear multimode fibers, which unambiguously demonstrate that both the temperature <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> and the chemical potential <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math> dictate the flow of their associated extensive quantities, i.e., the energy and the optical power. Specifically, we study the process of light thermalization associated with two orthogonally polarized laser beams. Our observations are enabled by recently developed techniques that allow one to judiciously multiplex/demultiplex the optical power within various mode groups. Our results indicate that because of photon-photon collisions, “heat” only flows from a hot to a cold photon gas subsystem—thus providing an unequivocal demonstration of the second law in such all-optical thermodynamic arrangements. In addition to being fundamental, our findings provide a new approach to manipulate laser beams using thermodynamic principles.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021020\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021020","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,在非线性、高度多模系统中传播的光可以以完全类似于传统统计力学中遇到的方式热化。在热平衡状态下,系统的熵处于最大值,完全符合热力学第二定律。在这种情况下,一旦与这种光子气体相关的模式之间的统计功率分配达到雷利-让斯分布,熵就会达到极值,该分布完全由光学温度 T 和化学势 μ 来表征。然而,理论上有人认为,变量 T 和 μ 代表控制两个子系统之间各自共轭量交换的实际热动力。在这项工作中,我们首次报告了在非线性多模光纤中进行的光学量热测量,明确地证明了温度 T 和化学势 μ 都决定了其相关广泛量(即能量和光功率)的流动。具体来说,我们研究了与两束正交偏振激光束相关的光热化过程。我们的观测工作得益于最新开发的技术,这些技术允许我们在各种模式组内对光功率进行明智的多路复用/解复用。我们的研究结果表明,由于光子-光子碰撞,"热量 "只会从热光子气体子系统流向冷光子气体子系统--因此在这种全光热力学安排中,第二定律得到了明确的证明。除了基本原理之外,我们的发现还提供了一种利用热力学原理操纵激光束的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calorimetry of Photon Gases in Nonlinear Multimode Optical Fibers
Recent studies have shown that light propagating in a nonlinear, highly multimode system can thermalize in a manner totally analogous to that encountered in traditional statistical mechanics. At thermal equilibrium, the system’s entropy is at a maximum, in full accord with the second law of thermodynamics. In such arrangements, the entropy is extremized once the statistical power allocation among modes associated with this photon gas attains a Rayleigh-Jeans distribution that is fully characterized by an optical temperature T and a chemical potential μ. However, it has been theoretically argued that the variables T and μ represent actual thermodynamic forces that control the exchange of the respective conjugate quantities between two subsystems. In this work, we report, for the first time, optical calorimetric measurements in nonlinear multimode fibers, which unambiguously demonstrate that both the temperature T and the chemical potential μ dictate the flow of their associated extensive quantities, i.e., the energy and the optical power. Specifically, we study the process of light thermalization associated with two orthogonally polarized laser beams. Our observations are enabled by recently developed techniques that allow one to judiciously multiplex/demultiplex the optical power within various mode groups. Our results indicate that because of photon-photon collisions, “heat” only flows from a hot to a cold photon gas subsystem—thus providing an unequivocal demonstration of the second law in such all-optical thermodynamic arrangements. In addition to being fundamental, our findings provide a new approach to manipulate laser beams using thermodynamic principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Impact of Nuclear Motion on Light-Induced Bimolecular Interaction Dynamics Quantum Entanglement between Optical and Microwave Photonic Qubits Geometric Landscape Annealing as an Optimization Principle Underlying the Coherent Ising Machine Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations Theoretical Description of Pump-Probe Experiments in Charge-Density-Wave Materials out to Long Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1