具有抗菌活性的含吡唑并吡啶嘧啶核的多杂环化合物的设计与合成

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2024-04-29 DOI:10.1002/open.202400070
Farag A. El-Essawy, Mohammad Ahmad Ahmad Odah
{"title":"具有抗菌活性的含吡唑并吡啶嘧啶核的多杂环化合物的设计与合成","authors":"Farag A. El-Essawy,&nbsp;Mohammad Ahmad Ahmad Odah","doi":"10.1002/open.202400070","DOIUrl":null,"url":null,"abstract":"<p>This study reports the design, synthesis, and antibacterial evaluation of a library of novel polyheterocyclic derivatives featuring a unique fused pyrimidopyridopyrazole moiety. A cyclocondensation reaction between an amino−pyrazolopyridopyrimidine precursor and malonates afforded a series of pyrimidopyridopyrazolopyrimidine derivatives. Further diversification was achieved through nucleophilic cyclocondensation, yielding a collection of complex polyheterocyclic systems encompassing various ring structures. All synthesized compounds were rigorously characterized using spectroscopic techniques and elemental analysis. The antibacterial activity of the newly synthesized compounds was assessed against a panel of Gram-positive and Gram-negative bacteria. Notably, several compounds exhibited promising antibacterial activity, highlighting their potential as leads for the development of novel antibiotics.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"13 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400070","citationCount":"0","resultStr":"{\"title\":\"Design and Synthesis of Polyheterocyclic Compounds Containing Pyrazolopyridopyrimidine Nucleus with Antimicrobial Activities\",\"authors\":\"Farag A. El-Essawy,&nbsp;Mohammad Ahmad Ahmad Odah\",\"doi\":\"10.1002/open.202400070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports the design, synthesis, and antibacterial evaluation of a library of novel polyheterocyclic derivatives featuring a unique fused pyrimidopyridopyrazole moiety. A cyclocondensation reaction between an amino−pyrazolopyridopyrimidine precursor and malonates afforded a series of pyrimidopyridopyrazolopyrimidine derivatives. Further diversification was achieved through nucleophilic cyclocondensation, yielding a collection of complex polyheterocyclic systems encompassing various ring structures. All synthesized compounds were rigorously characterized using spectroscopic techniques and elemental analysis. The antibacterial activity of the newly synthesized compounds was assessed against a panel of Gram-positive and Gram-negative bacteria. Notably, several compounds exhibited promising antibacterial activity, highlighting their potential as leads for the development of novel antibiotics.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/open.202400070\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400070","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究介绍了以融合嘧啶并吡唑为核心的新型多环衍生物,它们是通过与氨基吡唑并吡啶嘧啶前体和各种丙二酸盐的环缩合反应合成的。这些化合物通过光谱技术进行表征,对革兰氏阳性菌和革兰氏阴性菌都具有显著的抗菌活性,突显了它们作为新型抗生素先导物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Synthesis of Polyheterocyclic Compounds Containing Pyrazolopyridopyrimidine Nucleus with Antimicrobial Activities

This study reports the design, synthesis, and antibacterial evaluation of a library of novel polyheterocyclic derivatives featuring a unique fused pyrimidopyridopyrazole moiety. A cyclocondensation reaction between an amino−pyrazolopyridopyrimidine precursor and malonates afforded a series of pyrimidopyridopyrazolopyrimidine derivatives. Further diversification was achieved through nucleophilic cyclocondensation, yielding a collection of complex polyheterocyclic systems encompassing various ring structures. All synthesized compounds were rigorously characterized using spectroscopic techniques and elemental analysis. The antibacterial activity of the newly synthesized compounds was assessed against a panel of Gram-positive and Gram-negative bacteria. Notably, several compounds exhibited promising antibacterial activity, highlighting their potential as leads for the development of novel antibiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Exploring the Electronic Interactions of Adenine, Cytosine, and Guanine with Graphene: A DFT Study. Molecular Insights Into β-Glucuronidase Inhibition by Alhagi Graecorum Flavonoids: A Computational and Experimental Approach. A Facile Method to Incorporate Di-Dopant Elements (F and Sb) into Crystalline Mesoporous Tin Dioxide Nano Powder at Ambient Temperature and Pressure. Electrochemically Induced, Metal Free Synthesis of 2-substituted chroman-4-ones. Front Cover: Conversion of Cellobiose to Formic Acid as a Biomass-Derived Renewable Hydrogen Source Using Solid Base Catalysts (ChemistryOpen 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1