Yao Luo, Dhruv Desai, Benjamin K. Chang, Jinsoo Park, Marco Bernardi
{"title":"数据驱动的电子-鹭鸶相互作用压缩","authors":"Yao Luo, Dhruv Desai, Benjamin K. Chang, Jinsoo Park, Marco Bernardi","doi":"10.1103/physrevx.14.021023","DOIUrl":null,"url":null,"abstract":"First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math>) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions. Furthermore, they accelerate state-of-the-art first-principles <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Compression of Electron-Phonon Interactions\",\"authors\":\"Yao Luo, Dhruv Desai, Benjamin K. Chang, Jinsoo Park, Marco Bernardi\",\"doi\":\"10.1103/physrevx.14.021023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math>) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions. Furthermore, they accelerate state-of-the-art first-principles <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021023\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021023","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Data-Driven Compression of Electron-Phonon Interactions
First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon () interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of interactions. Furthermore, they accelerate state-of-the-art first-principles calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.