{"title":"长记忆下具有交互固定效应的面板数据模型的稳健推断:频域方法","authors":"Shuyao Ke , Peter C.B. Phillips , Liangjun Su","doi":"10.1016/j.jeconom.2024.105761","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 2","pages":"Article 105761"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach\",\"authors\":\"Shuyao Ke , Peter C.B. Phillips , Liangjun Su\",\"doi\":\"10.1016/j.jeconom.2024.105761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"241 2\",\"pages\":\"Article 105761\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001076\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001076","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach
This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.