Gisele C. Gotardi , John van der Kamp , Martina Navarro , Geert J.P. Savelsbergh , Sérgio T. Rodrigues
{"title":"基于情境的自行车制动控制:经验揭示了控制方式的差异","authors":"Gisele C. Gotardi , John van der Kamp , Martina Navarro , Geert J.P. Savelsbergh , Sérgio T. Rodrigues","doi":"10.1016/j.humov.2024.103225","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated whether in an in-situ collision avoidance experiment cyclists regulate braking by adopting an affordance-based control strategy. Within an affordance-based control strategy for braking, deceleration is controlled relative to the maximum achievable deceleration rather than by nulling out deviations from ideal deceleration, and potentially allowing for different braking styles. Twenty active- and eighteen inactive-cyclists were asked to cycle on a straight path in an indoor gym and to stop as close as possible in front of a stationary obstacle. Maximum achievable deceleration was manipulated by loading the bike: no-load, load-5 kg, and load-10 kg. Two approach distances were used to vary cycling speed. Participants in both groups stopped farther from the obstacle when approaching with long- than short-initial distance conditions. No systematic effects of loading on braking performance and control were found across the two groups. However, both groups did increase the magnitude of brake adjustments as ideal deceleration increased and got closer to the action boundary, even when current deceleration approached the ideal deceleration. This indicates that participants adopted an affordance-based control strategy for braking. Two braking styles were identified: an aggressive style, characterized by a late braking onset and a high, steep peak in ideal deceleration, and a conservative style, characterized by an early braking onset and gradual, linear increase in ideal deceleration. The aggressive braking style was more prevalent among the active-cyclists. We suggest that the braking styles emerge from differences in calibration between information and action. The novelty of our work lies in confirming that cyclists adopt an affordance-based control strategy in an in-situ experiment and in demonstrating and explicating how affordance-based control can incorporate the emergence of different styles of braking.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"95 ","pages":"Article 103225"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167945724000484/pdfft?md5=6338dc00c2f25f1fec09f5d75d9bca44&pid=1-s2.0-S0167945724000484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Affordance-based control of braking in cycling: Experience reveals differences in the style of control\",\"authors\":\"Gisele C. Gotardi , John van der Kamp , Martina Navarro , Geert J.P. Savelsbergh , Sérgio T. Rodrigues\",\"doi\":\"10.1016/j.humov.2024.103225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigated whether in an in-situ collision avoidance experiment cyclists regulate braking by adopting an affordance-based control strategy. Within an affordance-based control strategy for braking, deceleration is controlled relative to the maximum achievable deceleration rather than by nulling out deviations from ideal deceleration, and potentially allowing for different braking styles. Twenty active- and eighteen inactive-cyclists were asked to cycle on a straight path in an indoor gym and to stop as close as possible in front of a stationary obstacle. Maximum achievable deceleration was manipulated by loading the bike: no-load, load-5 kg, and load-10 kg. Two approach distances were used to vary cycling speed. Participants in both groups stopped farther from the obstacle when approaching with long- than short-initial distance conditions. No systematic effects of loading on braking performance and control were found across the two groups. However, both groups did increase the magnitude of brake adjustments as ideal deceleration increased and got closer to the action boundary, even when current deceleration approached the ideal deceleration. This indicates that participants adopted an affordance-based control strategy for braking. Two braking styles were identified: an aggressive style, characterized by a late braking onset and a high, steep peak in ideal deceleration, and a conservative style, characterized by an early braking onset and gradual, linear increase in ideal deceleration. The aggressive braking style was more prevalent among the active-cyclists. We suggest that the braking styles emerge from differences in calibration between information and action. The novelty of our work lies in confirming that cyclists adopt an affordance-based control strategy in an in-situ experiment and in demonstrating and explicating how affordance-based control can incorporate the emergence of different styles of braking.</p></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":\"95 \",\"pages\":\"Article 103225\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000484/pdfft?md5=6338dc00c2f25f1fec09f5d75d9bca44&pid=1-s2.0-S0167945724000484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000484\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000484","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Affordance-based control of braking in cycling: Experience reveals differences in the style of control
We investigated whether in an in-situ collision avoidance experiment cyclists regulate braking by adopting an affordance-based control strategy. Within an affordance-based control strategy for braking, deceleration is controlled relative to the maximum achievable deceleration rather than by nulling out deviations from ideal deceleration, and potentially allowing for different braking styles. Twenty active- and eighteen inactive-cyclists were asked to cycle on a straight path in an indoor gym and to stop as close as possible in front of a stationary obstacle. Maximum achievable deceleration was manipulated by loading the bike: no-load, load-5 kg, and load-10 kg. Two approach distances were used to vary cycling speed. Participants in both groups stopped farther from the obstacle when approaching with long- than short-initial distance conditions. No systematic effects of loading on braking performance and control were found across the two groups. However, both groups did increase the magnitude of brake adjustments as ideal deceleration increased and got closer to the action boundary, even when current deceleration approached the ideal deceleration. This indicates that participants adopted an affordance-based control strategy for braking. Two braking styles were identified: an aggressive style, characterized by a late braking onset and a high, steep peak in ideal deceleration, and a conservative style, characterized by an early braking onset and gradual, linear increase in ideal deceleration. The aggressive braking style was more prevalent among the active-cyclists. We suggest that the braking styles emerge from differences in calibration between information and action. The novelty of our work lies in confirming that cyclists adopt an affordance-based control strategy in an in-situ experiment and in demonstrating and explicating how affordance-based control can incorporate the emergence of different styles of braking.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."