CR-Lasso:稳健的单元正则化稀疏回归

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-04-30 DOI:10.1016/j.csda.2024.107971
Peng Su , Garth Tarr , Samuel Muller , Suojin Wang
{"title":"CR-Lasso:稳健的单元正则化稀疏回归","authors":"Peng Su ,&nbsp;Garth Tarr ,&nbsp;Samuel Muller ,&nbsp;Suojin Wang","doi":"10.1016/j.csda.2024.107971","DOIUrl":null,"url":null,"abstract":"<div><p>Cellwise contamination remains a challenging problem for data scientists, particularly in research fields that require the selection of sparse features. Traditional robust methods may not be feasible nor efficient in dealing with such contaminated datasets. A robust Lasso-type cellwise regularization procedure is proposed which is coined CR-Lasso, that performs feature selection in the presence of cellwise outliers by minimising a regression loss and cell deviation measure simultaneously. The evaluation of this approach involves simulation studies that compare its selection and prediction performance with several sparse regression methods. The results demonstrate that CR-Lasso is competitive within the considered settings. The effectiveness of the proposed method is further illustrated through an analysis of a bone mineral density dataset.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"197 ","pages":"Article 107971"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000550/pdfft?md5=7f097cb47b472d8dfd0dc105cc9fcafa&pid=1-s2.0-S0167947324000550-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CR-Lasso: Robust cellwise regularized sparse regression\",\"authors\":\"Peng Su ,&nbsp;Garth Tarr ,&nbsp;Samuel Muller ,&nbsp;Suojin Wang\",\"doi\":\"10.1016/j.csda.2024.107971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellwise contamination remains a challenging problem for data scientists, particularly in research fields that require the selection of sparse features. Traditional robust methods may not be feasible nor efficient in dealing with such contaminated datasets. A robust Lasso-type cellwise regularization procedure is proposed which is coined CR-Lasso, that performs feature selection in the presence of cellwise outliers by minimising a regression loss and cell deviation measure simultaneously. The evaluation of this approach involves simulation studies that compare its selection and prediction performance with several sparse regression methods. The results demonstrate that CR-Lasso is competitive within the considered settings. The effectiveness of the proposed method is further illustrated through an analysis of a bone mineral density dataset.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"197 \",\"pages\":\"Article 107971\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000550/pdfft?md5=7f097cb47b472d8dfd0dc105cc9fcafa&pid=1-s2.0-S0167947324000550-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000550\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于数据科学家来说,细胞污染仍然是一个具有挑战性的问题,尤其是在需要选择稀疏特征的研究领域。传统的稳健方法在处理此类污染数据集时可能既不可行也不高效。本文提出了一种稳健的 Lasso 型单元正则化程序,被称为 CR-Lasso,通过同时最小化回归损失和单元偏差度量,在存在单元离群值的情况下进行特征选择。对这种方法的评估包括模拟研究,将其选择和预测性能与几种稀疏回归方法进行比较。结果表明,在所考虑的设置中,CR-Lasso 是有竞争力的。通过对骨矿物质密度数据集的分析,进一步说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CR-Lasso: Robust cellwise regularized sparse regression

Cellwise contamination remains a challenging problem for data scientists, particularly in research fields that require the selection of sparse features. Traditional robust methods may not be feasible nor efficient in dealing with such contaminated datasets. A robust Lasso-type cellwise regularization procedure is proposed which is coined CR-Lasso, that performs feature selection in the presence of cellwise outliers by minimising a regression loss and cell deviation measure simultaneously. The evaluation of this approach involves simulation studies that compare its selection and prediction performance with several sparse regression methods. The results demonstrate that CR-Lasso is competitive within the considered settings. The effectiveness of the proposed method is further illustrated through an analysis of a bone mineral density dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves Statistical modeling of Dengue transmission dynamics with environmental factors Analysis of order-of-addition experiments A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1