{"title":"通过新技术透视管蛋白翻译后修饰","authors":"Gonzalo Alvarez Viar, Gaia Pigino","doi":"10.1016/j.ceb.2024.102362","DOIUrl":null,"url":null,"abstract":"<div><p>The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"88 ","pages":"Article 102362"},"PeriodicalIF":6.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000413/pdfft?md5=8b5932a6190c03ceff9ef8eb416a10e3&pid=1-s2.0-S0955067424000413-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tubulin posttranslational modifications through the lens of new technologies\",\"authors\":\"Gonzalo Alvarez Viar, Gaia Pigino\",\"doi\":\"10.1016/j.ceb.2024.102362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"88 \",\"pages\":\"Article 102362\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000413/pdfft?md5=8b5932a6190c03ceff9ef8eb416a10e3&pid=1-s2.0-S0955067424000413-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000413\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000413","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Tubulin posttranslational modifications through the lens of new technologies
The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.