利用人工神经网络了解 Airbnb 在巴塞罗那的表现和适应策略:纵向、空间和多房东视角

IF 7.6 1区 管理学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Journal of Hospitality and Tourism Management Pub Date : 2024-05-03 DOI:10.1016/j.jhtm.2024.04.010
Soledad Morales-Pérez , Antoni Meseguer-Artola , Lluís Alfons Garay-Tamajón , Josep Lladós-Masllorens
{"title":"利用人工神经网络了解 Airbnb 在巴塞罗那的表现和适应策略:纵向、空间和多房东视角","authors":"Soledad Morales-Pérez ,&nbsp;Antoni Meseguer-Artola ,&nbsp;Lluís Alfons Garay-Tamajón ,&nbsp;Josep Lladós-Masllorens","doi":"10.1016/j.jhtm.2024.04.010","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the Airbnb platform's performance and adaptive strategies by analysing its spatial, temporal, and multi-host patterns. A three-layer model based on machine learning and neural networks, compared with a multiple linear regression, Random Forest Regression (RFR), and Support Vector Regression (SVR) methods, is used to conduct a longitudinal analysis of three representative months for tourism each year from 2016 to 2022. The study reveals the importance of “minimum nights”, active price management and professionalization, coupled with the potential transfer of accommodations in the medium- and long-term residential markets, as the platform's adaptive strategies. The findings also suggest a shift towards more professional host profiles and the consolidation of new tourist hubs in the city in post-Covid period. The study contributes to the understanding of Airbnb's performance and impact on global urban dynamics and demonstrates an application of machine learning to tourism and hospitality research. Theoretical and practical implications are discussed.</p></div>","PeriodicalId":51445,"journal":{"name":"Journal of Hospitality and Tourism Management","volume":"59 ","pages":"Pages 238-250"},"PeriodicalIF":7.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inside Airbnb’s performance and adaptive strategies in Barcelona using artificial neural networks: A longitudinal, spatial, and multi-host perspective\",\"authors\":\"Soledad Morales-Pérez ,&nbsp;Antoni Meseguer-Artola ,&nbsp;Lluís Alfons Garay-Tamajón ,&nbsp;Josep Lladós-Masllorens\",\"doi\":\"10.1016/j.jhtm.2024.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the Airbnb platform's performance and adaptive strategies by analysing its spatial, temporal, and multi-host patterns. A three-layer model based on machine learning and neural networks, compared with a multiple linear regression, Random Forest Regression (RFR), and Support Vector Regression (SVR) methods, is used to conduct a longitudinal analysis of three representative months for tourism each year from 2016 to 2022. The study reveals the importance of “minimum nights”, active price management and professionalization, coupled with the potential transfer of accommodations in the medium- and long-term residential markets, as the platform's adaptive strategies. The findings also suggest a shift towards more professional host profiles and the consolidation of new tourist hubs in the city in post-Covid period. The study contributes to the understanding of Airbnb's performance and impact on global urban dynamics and demonstrates an application of machine learning to tourism and hospitality research. Theoretical and practical implications are discussed.</p></div>\",\"PeriodicalId\":51445,\"journal\":{\"name\":\"Journal of Hospitality and Tourism Management\",\"volume\":\"59 \",\"pages\":\"Pages 238-250\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hospitality and Tourism Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1447677024000433\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hospitality and Tourism Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1447677024000433","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过分析 Airbnb 平台的空间、时间和多房东模式,探索其性能和适应策略。研究采用基于机器学习和神经网络的三层模型,与多元线性回归、随机森林回归(RFR)和支持向量回归(SVR)方法进行比较,对 2016 年至 2022 年每年三个具有代表性的旅游月份进行纵向分析。研究揭示了 "最低住宿天数"、积极的价格管理和专业化,以及中长期住宅市场住宿的潜在转移作为平台适应性战略的重要性。研究结果还表明,在后科维德时期,城市将向更专业化的房东形象转变,并巩固新的旅游中心。这项研究有助于人们了解 Airbnb 的表现及其对全球城市发展的影响,并展示了机器学习在旅游业和酒店业研究中的应用。研究还讨论了理论和实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inside Airbnb’s performance and adaptive strategies in Barcelona using artificial neural networks: A longitudinal, spatial, and multi-host perspective

This research explores the Airbnb platform's performance and adaptive strategies by analysing its spatial, temporal, and multi-host patterns. A three-layer model based on machine learning and neural networks, compared with a multiple linear regression, Random Forest Regression (RFR), and Support Vector Regression (SVR) methods, is used to conduct a longitudinal analysis of three representative months for tourism each year from 2016 to 2022. The study reveals the importance of “minimum nights”, active price management and professionalization, coupled with the potential transfer of accommodations in the medium- and long-term residential markets, as the platform's adaptive strategies. The findings also suggest a shift towards more professional host profiles and the consolidation of new tourist hubs in the city in post-Covid period. The study contributes to the understanding of Airbnb's performance and impact on global urban dynamics and demonstrates an application of machine learning to tourism and hospitality research. Theoretical and practical implications are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
8.40%
发文量
177
审稿时长
45 days
期刊介绍: Journal Name: Journal of Hospitality and Tourism Management Affiliation: Official journal of CAUTHE (Council for Australasian Tourism and Hospitality Education Inc.) Scope: Broad range of topics including: Tourism and travel management Leisure and recreation studies Emerging field of event management Content: Contains both theoretical and applied research papers Encourages submission of results of collaborative research between academia and industry.
期刊最新文献
Cultural resilience of heritage sites: Dimension exploration and scale development Virtual voices in hospitality: Assessing narrative styles of digital influencers in hotel advertising Impact of pro-poor ethnic tourism on achieving sustainable development goals Cross-industry career mobility of hospitality and tourism graduates: Motivations and transferrable skills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1