将 SPIO-BMSCs 磁性植入双相支架可促进肩袖修复后的肌腱-骨愈合

Chi Zhang, Jia-Le Jin, Cong-Hui Zhou, Cheng-Xing Ruan, Peng-Fei Lei, You-Zhi Cai
{"title":"将 SPIO-BMSCs 磁性植入双相支架可促进肩袖修复后的肌腱-骨愈合","authors":"Chi Zhang, Jia-Le Jin, Cong-Hui Zhou, Cheng-Xing Ruan, Peng-Fei Lei, You-Zhi Cai","doi":"10.1177/03635465241247288","DOIUrl":null,"url":null,"abstract":"Background:The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration.Hypothesis:Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR.Study Design:Controlled laboratory study.Methods:BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation.Results:BMSCs labeled with 100 μg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model.Conclusion:Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model.Clinical Relevance:This study provides an alternative strategy for improving TBI healing after RCR.","PeriodicalId":517411,"journal":{"name":"The American Journal of Sports Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair\",\"authors\":\"Chi Zhang, Jia-Le Jin, Cong-Hui Zhou, Cheng-Xing Ruan, Peng-Fei Lei, You-Zhi Cai\",\"doi\":\"10.1177/03635465241247288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration.Hypothesis:Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR.Study Design:Controlled laboratory study.Methods:BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation.Results:BMSCs labeled with 100 μg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model.Conclusion:Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model.Clinical Relevance:This study provides an alternative strategy for improving TBI healing after RCR.\",\"PeriodicalId\":517411,\"journal\":{\"name\":\"The American Journal of Sports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Journal of Sports Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03635465241247288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Journal of Sports Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03635465241247288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:肩袖肌腱骨界面(TBI)的内在愈合能力较差,这增加了肩袖修复术(RCR)后再次撕裂的风险。然而,促进 TBI 的再生仍是一项巨大的临床挑战。假设:将标记有超顺磁性氧化铁的骨髓间充质干细胞(SPIO-BMSCs)磁性播种到双相支架中,可促进 RCR 后肌腱骨的愈合。采用普鲁士蓝染色、CCK-8检测、Western印迹和定量反转录聚合酶链反应(PCR)确定SPIOs对细胞生物活性和能力的最佳影响浓度。然后在磁场下将 SPIO-BMSCs 磁性播种到双相支架中。扫描电子显微镜评估了播种效果,Western blot 和 PCR 评估了将 SPIO-BMSCs 播种到支架后软骨分化的潜在机制。此外,还通过组织学分析、酶联免疫吸附试验和生物力学评估,研究了 SPIO-BMSC/ 双相支架对大鼠模型 RCR 后肌腱骨愈合的影响。将SPIO-BMSCs磁性播种到双相支架中,该支架具有很高的播种效率,可通过CDR1as/miR-7/FGF2途径提高SPIO-BMSCs的软骨分化能力,从而在体外形成TBI。此外,磁性播种 SPIO-BMSCs 的双相支架在体内的应用显示了其再生潜力,表明在大鼠肩袖撕裂模型中,磁性播种 SPIO-BMSCs 可显著加速和促进 TBI 愈合,并在 RCR 后具有优异的生物力学特性。临床意义:这项研究为改善大鼠肩袖撕裂模型 RCR 后的 TBI 愈合提供了另一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair
Background:The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration.Hypothesis:Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR.Study Design:Controlled laboratory study.Methods:BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation.Results:BMSCs labeled with 100 μg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model.Conclusion:Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model.Clinical Relevance:This study provides an alternative strategy for improving TBI healing after RCR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnostic Accuracy of Magnetic Resonance Imaging in the 120° Flexed-Knee Position for Detecting and Classifying Meniscal Ramp Lesion Reversal of Denervation Changes in Infraspinatus Muscle After Operative Management of Paralabral Cysts: An MRI-Based Study. Physiologic Preoperative Knee Hyperextension Is Not Associated With Postoperative Laxity, Subjective Knee Function, or Revision Surgery After ACL Reconstruction With Hamstring Tendon Autografts. All-Inside Endoscopic Classic Bröstrom-Gould Technique: Medium-term Results. Circumferential Labral Reconstruction With Knotless All-Suture Anchors Restores Hip Distractive Stability: A Cadaveric Biomechanical Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1