利用共享内存上的指定执行实现基于公制的并行各向异性网格适配

Christos Tsolakis, Nikos Chrisochoides
{"title":"利用共享内存上的指定执行实现基于公制的并行各向异性网格适配","authors":"Christos Tsolakis, Nikos Chrisochoides","doi":"arxiv-2404.18030","DOIUrl":null,"url":null,"abstract":"Efficient and robust anisotropic mesh adaptation is crucial for Computational\nFluid Dynamics (CFD) simulations. The CFD Vision 2030 Study highlights the\npressing need for this technology, particularly for simulations targeting\nsupercomputers. This work applies a fine-grained speculative approach to\nanisotropic mesh operations. Our implementation exhibits more than 90% parallel\nefficiency on a multi-core node. Additionally, we evaluate our method within an\nadaptive pipeline for a spectrum of publicly available test-cases that includes\nboth analytically derived and error-based fields. For all test-cases, our\nresults are in accordance with published results in the literature. Support for\nCAD-based data is introduced, and its effectiveness is demonstrated on one of\nNASA's High-Lift prediction workshop cases.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Metric-based Anisotropic Mesh Adaptation using Speculative Execution on Shared Memory\",\"authors\":\"Christos Tsolakis, Nikos Chrisochoides\",\"doi\":\"arxiv-2404.18030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and robust anisotropic mesh adaptation is crucial for Computational\\nFluid Dynamics (CFD) simulations. The CFD Vision 2030 Study highlights the\\npressing need for this technology, particularly for simulations targeting\\nsupercomputers. This work applies a fine-grained speculative approach to\\nanisotropic mesh operations. Our implementation exhibits more than 90% parallel\\nefficiency on a multi-core node. Additionally, we evaluate our method within an\\nadaptive pipeline for a spectrum of publicly available test-cases that includes\\nboth analytically derived and error-based fields. For all test-cases, our\\nresults are in accordance with published results in the literature. Support for\\nCAD-based data is introduced, and its effectiveness is demonstrated on one of\\nNASA's High-Lift prediction workshop cases.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.18030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效稳健的各向异性网格适应对于计算流体动力学(CFD)模拟至关重要。CFD 2030 愿景研究》强调了对这项技术的迫切需求,尤其是针对超级计算机的仿真。这项工作将细粒度投机方法应用于各向异性网格操作。我们的实现在多核节点上表现出 90% 以上的并行效率。此外,我们还在自适应流水线中对我们的方法进行了评估,该方法适用于一系列公开可用的测试案例,其中包括分析得出的字段和基于误差的字段。对于所有测试案例,我们的结果都与文献中公布的结果一致。我们还介绍了对基于 CAD 的数据的支持,并在美国国家航空航天局(NASA)高扬程预测研讨会的一个案例中演示了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Metric-based Anisotropic Mesh Adaptation using Speculative Execution on Shared Memory
Efficient and robust anisotropic mesh adaptation is crucial for Computational Fluid Dynamics (CFD) simulations. The CFD Vision 2030 Study highlights the pressing need for this technology, particularly for simulations targeting supercomputers. This work applies a fine-grained speculative approach to anisotropic mesh operations. Our implementation exhibits more than 90% parallel efficiency on a multi-core node. Additionally, we evaluate our method within an adaptive pipeline for a spectrum of publicly available test-cases that includes both analytically derived and error-based fields. For all test-cases, our results are in accordance with published results in the literature. Support for CAD-based data is introduced, and its effectiveness is demonstrated on one of NASA's High-Lift prediction workshop cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1