用管网法计算断裂导管岩溶地下水压力和流量

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Hydrogeology Journal Pub Date : 2024-05-02 DOI:10.1007/s10040-024-02786-y
Pengshuai Yang, Tianyu Li, Qiuyan Fan, Zhaofeng Li, Jiahui Liang
{"title":"用管网法计算断裂导管岩溶地下水压力和流量","authors":"Pengshuai Yang, Tianyu Li, Qiuyan Fan, Zhaofeng Li, Jiahui Liang","doi":"10.1007/s10040-024-02786-y","DOIUrl":null,"url":null,"abstract":"<p>Fracture conduits serve as the primary channels for groundwater runoff in karst areas, controlling the water level and distribution of flow in the groundwater system. To determine the parameters of fracture-conduit karst systems and to analyze the distribution characteristics of the pressure field and flow field, a pipe network calculation method is presented that discretizes the fracture medium and conduit medium into pipes and nodes. The connection rules for nodes and pipes are established, and different water conductivity coefficients are assigned to discrete pipes. Based on the principles of conservation of mass and energy, nonhomogeneous linear control equations are constructed to represent the discrete pipe network (PN). By solving the equations, groundwater parameters can be calculated for the PN. Meanwhile, a laboratory model test was conducted to validate the PN, and the numerical calculation results aligned well with the laboratory test results. In addition, a simple case is compared and verified, and the calculation results are compared with those obtained using the multiphysics software, COMSOL. The results indicate that the PN method can achieve more accurate calculation results with fewer elements. The method calculates the distribution characteristics of the flow field within the water-conducting medium and elucidates the influence of the properties of the medium on the distribution characteristics of the flow field. The research results provide guidance for the distribution of groundwater flow fields in karst areas and are expected to be applied to calculating groundwater pressures and flows in large-scale fracture-conduit systems.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of fracture-conduit karst groundwater pressures and flows using a pipe network method\",\"authors\":\"Pengshuai Yang, Tianyu Li, Qiuyan Fan, Zhaofeng Li, Jiahui Liang\",\"doi\":\"10.1007/s10040-024-02786-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fracture conduits serve as the primary channels for groundwater runoff in karst areas, controlling the water level and distribution of flow in the groundwater system. To determine the parameters of fracture-conduit karst systems and to analyze the distribution characteristics of the pressure field and flow field, a pipe network calculation method is presented that discretizes the fracture medium and conduit medium into pipes and nodes. The connection rules for nodes and pipes are established, and different water conductivity coefficients are assigned to discrete pipes. Based on the principles of conservation of mass and energy, nonhomogeneous linear control equations are constructed to represent the discrete pipe network (PN). By solving the equations, groundwater parameters can be calculated for the PN. Meanwhile, a laboratory model test was conducted to validate the PN, and the numerical calculation results aligned well with the laboratory test results. In addition, a simple case is compared and verified, and the calculation results are compared with those obtained using the multiphysics software, COMSOL. The results indicate that the PN method can achieve more accurate calculation results with fewer elements. The method calculates the distribution characteristics of the flow field within the water-conducting medium and elucidates the influence of the properties of the medium on the distribution characteristics of the flow field. The research results provide guidance for the distribution of groundwater flow fields in karst areas and are expected to be applied to calculating groundwater pressures and flows in large-scale fracture-conduit systems.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02786-y\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02786-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

断裂导管是岩溶地区地下水径流的主要通道,控制着地下水系统的水位和水流分布。为了确定断裂导流岩溶系统的参数,分析压力场和流场的分布特征,提出了一种管网计算方法,将断裂介质和导流介质离散为管道和节点。建立了节点和管道的连接规则,并为离散管道分配了不同的导水系数。根据质量和能量守恒原理,构建了非均质线性控制方程来表示离散管网(PN)。通过对方程的求解,可以计算出地下水参数。同时,还进行了实验室模型试验来验证 PN,数值计算结果与实验室试验结果吻合良好。此外,还对一个简单的案例进行了比较和验证,并将计算结果与使用多物理场软件 COMSOL 得到的结果进行了比较。结果表明,PN 方法可以用较少的元素获得更精确的计算结果。该方法计算了导水介质内流场的分布特征,阐明了介质性质对流场分布特征的影响。研究成果为岩溶地区地下水流场的分布提供了指导,有望应用于大规模断裂导水系统中地下水压力和流量的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation of fracture-conduit karst groundwater pressures and flows using a pipe network method

Fracture conduits serve as the primary channels for groundwater runoff in karst areas, controlling the water level and distribution of flow in the groundwater system. To determine the parameters of fracture-conduit karst systems and to analyze the distribution characteristics of the pressure field and flow field, a pipe network calculation method is presented that discretizes the fracture medium and conduit medium into pipes and nodes. The connection rules for nodes and pipes are established, and different water conductivity coefficients are assigned to discrete pipes. Based on the principles of conservation of mass and energy, nonhomogeneous linear control equations are constructed to represent the discrete pipe network (PN). By solving the equations, groundwater parameters can be calculated for the PN. Meanwhile, a laboratory model test was conducted to validate the PN, and the numerical calculation results aligned well with the laboratory test results. In addition, a simple case is compared and verified, and the calculation results are compared with those obtained using the multiphysics software, COMSOL. The results indicate that the PN method can achieve more accurate calculation results with fewer elements. The method calculates the distribution characteristics of the flow field within the water-conducting medium and elucidates the influence of the properties of the medium on the distribution characteristics of the flow field. The research results provide guidance for the distribution of groundwater flow fields in karst areas and are expected to be applied to calculating groundwater pressures and flows in large-scale fracture-conduit systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
期刊最新文献
Numerical modeling of development of Leandras and Double Bopper Caves, Grand Canyon, USA Comparison of methods to calculate groundwater recharge for karst aquifers under a Mediterranean climate Estimation of groundwater flux with active distributed temperature sensing and the finite volume point dilution method: a field comparison Can small buried-valley aquifers be an emergency water source on the Canadian Prairies? The aquifer system of the Salado-Juramento fluvial megafan distal plain, Argentina: an integrated approach of geological, hydrogeological and numerical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1