{"title":"固定在多壁碳纳米管上的二苯基乙醛肟间隙镍:一种新的纳米催化剂,可用于螺呋喃并[2,3-d]嘧啶的一步法合成","authors":"Shadi Namdar, Nader Noroozi Pesyan","doi":"10.1007/s10934-024-01616-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we have synthesized and characterized new magnetic, stable and reusable nanocatalyst Fe<sub>3</sub>O<sub>4</sub>/MWCNT@S<sup><i>n</i></sup>Pr-DPhG-Ni. The new ligand of diphenylglyoxime was use for the gapping nickel ion on the nanocatalyst. This nanocatalyst was analyzed by FT IR, EDX, XRD, VSM, SEM, TEM and TGA-DTA spectroscopic techniques. This nanocatalyst was used for the one-pot synthesis of spiro furo[2,3-<i>d</i>]pyrimidines in the reaction with various aldehydes, (1,3-dimethyl)barbituric acid, cyanogen bromide and triethylamine in excellent yield at room temperature.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1641 - 1653"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diphenylglyoxime gapped nickel immobilized on multi-walled carbon nanotube: a new nanocatalyst for one-pot synthesis of spiro furo[2,3-d]pyrimidines\",\"authors\":\"Shadi Namdar, Nader Noroozi Pesyan\",\"doi\":\"10.1007/s10934-024-01616-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we have synthesized and characterized new magnetic, stable and reusable nanocatalyst Fe<sub>3</sub>O<sub>4</sub>/MWCNT@S<sup><i>n</i></sup>Pr-DPhG-Ni. The new ligand of diphenylglyoxime was use for the gapping nickel ion on the nanocatalyst. This nanocatalyst was analyzed by FT IR, EDX, XRD, VSM, SEM, TEM and TGA-DTA spectroscopic techniques. This nanocatalyst was used for the one-pot synthesis of spiro furo[2,3-<i>d</i>]pyrimidines in the reaction with various aldehydes, (1,3-dimethyl)barbituric acid, cyanogen bromide and triethylamine in excellent yield at room temperature.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 5\",\"pages\":\"1641 - 1653\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01616-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01616-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Diphenylglyoxime gapped nickel immobilized on multi-walled carbon nanotube: a new nanocatalyst for one-pot synthesis of spiro furo[2,3-d]pyrimidines
In this research, we have synthesized and characterized new magnetic, stable and reusable nanocatalyst Fe3O4/MWCNT@SnPr-DPhG-Ni. The new ligand of diphenylglyoxime was use for the gapping nickel ion on the nanocatalyst. This nanocatalyst was analyzed by FT IR, EDX, XRD, VSM, SEM, TEM and TGA-DTA spectroscopic techniques. This nanocatalyst was used for the one-pot synthesis of spiro furo[2,3-d]pyrimidines in the reaction with various aldehydes, (1,3-dimethyl)barbituric acid, cyanogen bromide and triethylamine in excellent yield at room temperature.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.