基于深度 Q 网络的概率有限状态机反馈稳定化

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-05-02 DOI:10.3389/fncom.2024.1385047
Hui Tian, Xin Su, Yanfang Hou
{"title":"基于深度 Q 网络的概率有限状态机反馈稳定化","authors":"Hui Tian, Xin Su, Yanfang Hou","doi":"10.3389/fncom.2024.1385047","DOIUrl":null,"url":null,"abstract":"BackgroundAs an important mathematical model, the finite state machine (FSM) has been used in many fields, such as manufacturing system, health care, and so on. This paper analyzes the current development status of FSMs. It is pointed out that the traditional methods are often inconvenient for analysis and design, or encounter high computational complexity problems when studying FSMs.MethodThe deep Q-network (DQN) technique, which is a model-free optimization method, is introduced to solve the stabilization problem of probabilistic finite state machines (PFSMs). In order to better understand the technique, some preliminaries, including Markov decision process, ϵ-greedy strategy, DQN, and so on, are recalled.ResultsFirst, a necessary and sufficient stabilizability condition for PFSMs is derived. Next, the feedback stabilization problem of PFSMs is transformed into an optimization problem. Finally, by using the stabilizability condition and deep Q-network, an algorithm for solving the optimization problem (equivalently, computing a state feedback stabilizer) is provided.DiscussionCompared with the traditional Q learning, DQN avoids the limited capacity problem. So our method can deal with high-dimensional complex systems efficiently. The effectiveness of our method is further demonstrated through an illustrative example.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"148 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback stabilization of probabilistic finite state machines based on deep Q-network\",\"authors\":\"Hui Tian, Xin Su, Yanfang Hou\",\"doi\":\"10.3389/fncom.2024.1385047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BackgroundAs an important mathematical model, the finite state machine (FSM) has been used in many fields, such as manufacturing system, health care, and so on. This paper analyzes the current development status of FSMs. It is pointed out that the traditional methods are often inconvenient for analysis and design, or encounter high computational complexity problems when studying FSMs.MethodThe deep Q-network (DQN) technique, which is a model-free optimization method, is introduced to solve the stabilization problem of probabilistic finite state machines (PFSMs). In order to better understand the technique, some preliminaries, including Markov decision process, ϵ-greedy strategy, DQN, and so on, are recalled.ResultsFirst, a necessary and sufficient stabilizability condition for PFSMs is derived. Next, the feedback stabilization problem of PFSMs is transformed into an optimization problem. Finally, by using the stabilizability condition and deep Q-network, an algorithm for solving the optimization problem (equivalently, computing a state feedback stabilizer) is provided.DiscussionCompared with the traditional Q learning, DQN avoids the limited capacity problem. So our method can deal with high-dimensional complex systems efficiently. The effectiveness of our method is further demonstrated through an illustrative example.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1385047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1385047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景 作为一种重要的数学模型,有限状态机(FSM)已被广泛应用于制造系统、医疗保健等多个领域。本文分析了 FSM 的发展现状。方法介绍了一种无模型优化方法--深度 Q 网络(DQN)技术,用于解决概率有限状态机(PFSM)的稳定问题。为了更好地理解该技术,回顾了一些前言,包括马尔可夫决策过程、ϵ 贪婪策略、DQN 等。接着,将 PFSM 的反馈稳定问题转化为优化问题。讨论与传统的 Q 学习相比,DQN 避免了容量有限的问题。因此,我们的方法可以高效地处理高维复杂系统。我们通过一个示例进一步证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feedback stabilization of probabilistic finite state machines based on deep Q-network
BackgroundAs an important mathematical model, the finite state machine (FSM) has been used in many fields, such as manufacturing system, health care, and so on. This paper analyzes the current development status of FSMs. It is pointed out that the traditional methods are often inconvenient for analysis and design, or encounter high computational complexity problems when studying FSMs.MethodThe deep Q-network (DQN) technique, which is a model-free optimization method, is introduced to solve the stabilization problem of probabilistic finite state machines (PFSMs). In order to better understand the technique, some preliminaries, including Markov decision process, ϵ-greedy strategy, DQN, and so on, are recalled.ResultsFirst, a necessary and sufficient stabilizability condition for PFSMs is derived. Next, the feedback stabilization problem of PFSMs is transformed into an optimization problem. Finally, by using the stabilizability condition and deep Q-network, an algorithm for solving the optimization problem (equivalently, computing a state feedback stabilizer) is provided.DiscussionCompared with the traditional Q learning, DQN avoids the limited capacity problem. So our method can deal with high-dimensional complex systems efficiently. The effectiveness of our method is further demonstrated through an illustrative example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
Editorial: Advances in computer science and their impact on data acquisition and analysis in neuroscience. Learning delays through gradients and structure: emergence of spatiotemporal patterns in spiking neural networks. Editorial: Deep learning and neuroimage processing in understanding neurological diseases. Alleviating the medical strain: a triage method via cross-domain text classification. Multimodal sleep staging network based on obstructive sleep apnea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1