利用 EPR 自旋捕获技术监测光合作用光保护过程中单线态氧的时态动态

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-04-28 DOI:10.1021/acs.biochem.4c00028
Collin J. Steen*, Jens Niklas, Oleg G. Poluektov, Richard D. Schaller, Graham R. Fleming and Lisa M. Utschig, 
{"title":"利用 EPR 自旋捕获技术监测光合作用光保护过程中单线态氧的时态动态","authors":"Collin J. Steen*,&nbsp;Jens Niklas,&nbsp;Oleg G. Poluektov,&nbsp;Richard D. Schaller,&nbsp;Graham R. Fleming and Lisa M. Utschig,&nbsp;","doi":"10.1021/acs.biochem.4c00028","DOIUrl":null,"url":null,"abstract":"<p >A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (<sup>1</sup>O<sub>2</sub>*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of <sup>1</sup>O<sub>2</sub>* in photodamage and cell signaling, few studies directly correlate <sup>1</sup>O<sub>2</sub>* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of <sup>1</sup>O<sub>2</sub>* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of <sup>1</sup>O<sub>2</sub>* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of <sup>1</sup>O<sub>2</sub>* in chlorophyll-containing photosynthetic membranes. We find that the apparent <sup>1</sup>O<sub>2</sub>* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of <sup>1</sup>O<sub>2</sub>* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of <sup>1</sup>O<sub>2</sub>* during high light. Upon saturation of NPQ, the concentration of <sup>1</sup>O<sub>2</sub>* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00028","citationCount":"0","resultStr":"{\"title\":\"EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis\",\"authors\":\"Collin J. Steen*,&nbsp;Jens Niklas,&nbsp;Oleg G. Poluektov,&nbsp;Richard D. Schaller,&nbsp;Graham R. Fleming and Lisa M. Utschig,&nbsp;\",\"doi\":\"10.1021/acs.biochem.4c00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (<sup>1</sup>O<sub>2</sub>*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of <sup>1</sup>O<sub>2</sub>* in photodamage and cell signaling, few studies directly correlate <sup>1</sup>O<sub>2</sub>* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of <sup>1</sup>O<sub>2</sub>* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of <sup>1</sup>O<sub>2</sub>* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of <sup>1</sup>O<sub>2</sub>* in chlorophyll-containing photosynthetic membranes. We find that the apparent <sup>1</sup>O<sub>2</sub>* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of <sup>1</sup>O<sub>2</sub>* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of <sup>1</sup>O<sub>2</sub>* during high light. Upon saturation of NPQ, the concentration of <sup>1</sup>O<sub>2</sub>* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00028\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

光保护能量耗散过程的一个核心目标是调节光合装置中的单线态氧(1O2*)和活性氧。尽管 1O2* 参与了光损伤和细胞信号传导,但很少有研究直接将 1O2* 的形成与非光化学淬灭(NPQ)或非光化学淬灭的缺乏联系起来。在这里,我们将自旋俘获电子顺磁共振(EPR)和时间分辨荧光光谱法结合起来,实时跟踪植物类囊体膜光保护过程中 1O2* 的参与情况。检测 1O2* 的 EPR 自旋捕获法首先针对基于染料的化学体系中的光敏化进行了优化,然后用于建立监测含叶绿素光合膜中 1O2* 的时间动态的方法。我们发现,在 1 小时的连续光照期间,膜中的表观 1O2* 浓度会发生变化。在对高光照强度的最初反应中,1O2*的浓度随着叶绿素荧光寿命通过 NPQ 的降低而降低。用尼格霉素(一种跨膜质子梯度解耦剂)处理膜,可延缓 NPQ 的激活和强光下 1O2* 的相关淬灭。当 NPQ 饱和时,未经处理和经尼格列汀处理的膜中的 1O2* 浓度都会增加,这反映了过量能量耗散在短期内(即强光照射的最初 10 分钟)在减轻光氧化应激方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Cryo-EM Structure and Biochemical Analysis of the Human Chemokine Receptor CCR8. A Divalent Metal Cation-Metabolite Interaction Model Reveals Cation Buffering and Speciation. Antimalarial Delivery with a Ferritin-Based Protein Cage: A Step toward Developing Smart Therapeutics against Malaria. Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1