甘氨酸(主要的大豆过敏原)在肠上皮 IPEC-J2 细胞单层上的转运

IF 2.2 3区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Animal Physiology and Animal Nutrition Pub Date : 2024-04-30 DOI:10.1111/jpn.13975
Shugui Zheng, Yintong Zhao, Ziang Zheng, Yajing Liu, Simiao Liu, Junfeng Han
{"title":"甘氨酸(主要的大豆过敏原)在肠上皮 IPEC-J2 细胞单层上的转运","authors":"Shugui Zheng,&nbsp;Yintong Zhao,&nbsp;Ziang Zheng,&nbsp;Yajing Liu,&nbsp;Simiao Liu,&nbsp;Junfeng Han","doi":"10.1111/jpn.13975","DOIUrl":null,"url":null,"abstract":"<p>Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.</p>","PeriodicalId":14942,"journal":{"name":"Journal of Animal Physiology and Animal Nutrition","volume":"108 5","pages":"1360-1369"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport of glycinin, the major soybean allergen, across intestinal epithelial IPEC-J2 cell monolayers\",\"authors\":\"Shugui Zheng,&nbsp;Yintong Zhao,&nbsp;Ziang Zheng,&nbsp;Yajing Liu,&nbsp;Simiao Liu,&nbsp;Junfeng Han\",\"doi\":\"10.1111/jpn.13975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.</p>\",\"PeriodicalId\":14942,\"journal\":{\"name\":\"Journal of Animal Physiology and Animal Nutrition\",\"volume\":\"108 5\",\"pages\":\"1360-1369\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Physiology and Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpn.13975\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Physiology and Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpn.13975","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

大豆过敏原进入人体是引发肠道过敏反应的第一步。然而,目前仍不清楚大豆的主要过敏原甘氨酸是如何通过肠粘膜屏障转运的。本研究的目的是利用 IPEC-J2 细胞模型阐明甘氨酸水解物通过肠上皮屏障转运的途径和机制。采用体外静态消化模型消化纯化的甘氨酸。通过细胞转运试验、细胞摄取试验、免疫电镜和内吞抑制试验研究了甘氨酸水解物通过肠上皮细胞的转运途径和机制。甘精水解物在 IPEC-J2 细胞单层上的转运与时间/剂量有关,遵循 Michaelis 方程。免疫电镜显示,细胞质中出现了一些甘氨素水解物,但在 IPEC-J2 细胞的细胞间隙中没有观察到甘氨素水解物。秋水仙碱、氯丙嗪和甲基-β-环糊精等抑制剂可明显抑制细胞对甘氨酸水解物的吸收。甘精水解物通过跨细胞途径穿过 IPEC-J2 细胞单层。凝集素和洞穴依赖性内吞均参与了上皮细胞对水解物的摄取。这些发现为预防和治疗大豆过敏提供了潜在的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transport of glycinin, the major soybean allergen, across intestinal epithelial IPEC-J2 cell monolayers

Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Animal Physiology and Animal Nutrition
Journal of Animal Physiology and Animal Nutrition 农林科学-奶制品与动物科学
CiteScore
6.30
自引率
0.00%
发文量
124
审稿时长
2 months
期刊介绍: As an international forum for hypothesis-driven scientific research, the Journal of Animal Physiology and Animal Nutrition publishes original papers in the fields of animal physiology, biochemistry and physiology of nutrition, animal nutrition, feed technology and preservation (only when related to animal nutrition). Well-conducted scientific work that meets the technical and ethical standards is considered only on the basis of scientific rigor. Research on farm and companion animals is preferred. Comparative work on exotic species is welcome too. Pharmacological or toxicological experiments with a direct reference to nutrition are also considered. Manuscripts on fish and other aquatic non-mammals with topics on growth or nutrition will not be accepted. Manuscripts may be rejected on the grounds that the subject is too specialized or that the contribution they make to animal physiology and nutrition is insufficient. In addition, reviews on topics of current interest within the scope of the journal are welcome. Authors are advised to send an outline to the Editorial Office for approval prior to submission.
期刊最新文献
Co-Administration of Vitamin U and Antacids in Diets Relieves Gastric Ulcers in Finishing Pigs. Effects of High-Dose Vitamin D3 Supplementation on Pig Performance, Vitamin D Content in Meat, and Muscle Transcriptome in Pigs. Effects of Essential Oil Blends Supplementation on Growth Performance, Meat Physiochemical Parameters, Intestinal Health and Lipid Metabolism of Weaned Bamei Piglets. Fibre Sources on Performance and Carcass and Meat Characteristics of Feedlot Nellore Young Bulls. Regulatory Effects of Copper on Ghrelin Secretion in Rat Fundic Glands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1