{"title":"精心设计的金(I)基 AIEgens:针对耐药细菌的强大广谱消除能力","authors":"Shuangling Deng, Zhen Peng, Fang Zhou, Guanqing Zhong, Zhen Cai, Xiaodong Tang, Changhuo Xu, Lei Zheng, Ben Zhong Tang, Jing Zhang","doi":"10.1002/agt2.575","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial resistance (AMR) remains an urgent and formidable challenge to global public health. Developing new medicines or alternative therapies to address AMR is imperative. Herein, we rationally designed and synthesized a series of Au(I)-based aggregation-induced emission luminogens (AIEgens) to combat drug-resistant bacterial infections. Through systematic screening, we identified an optimal AIEgen, called complex <b>5</b>, which can rapidly discriminate between gram-positive (G<sup>+</sup>) and gram-negative bacteria (G<sup>−</sup>) bacteria, and exert robust and broad-spectrum antimicrobial potency against diverse drug-resistant bacterial strains, including those intractable to treat in clinic. Furthermore, extensive testing against a variety of clinical drug-resistant isolates, coupled with the successful treatment of methicillin-resistant <i>Staphylococcus aureus</i>-infected skin wounds unequivocally validates the high efficiency and broad-spectrum activity of complex <b>5</b>. Therefore, complex <b>5</b> emerges as a promising candidate for combating drug-resistant bacterial infections in clinic, and this work provides inspiration for developing new solutions to address the escalating global challenge of AMR.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.575","citationCount":"0","resultStr":"{\"title\":\"Elaborately engineered Au(I)-based AIEgens: Robust and broad-spectrum elimination abilities toward drug-resistant bacteria\",\"authors\":\"Shuangling Deng, Zhen Peng, Fang Zhou, Guanqing Zhong, Zhen Cai, Xiaodong Tang, Changhuo Xu, Lei Zheng, Ben Zhong Tang, Jing Zhang\",\"doi\":\"10.1002/agt2.575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimicrobial resistance (AMR) remains an urgent and formidable challenge to global public health. Developing new medicines or alternative therapies to address AMR is imperative. Herein, we rationally designed and synthesized a series of Au(I)-based aggregation-induced emission luminogens (AIEgens) to combat drug-resistant bacterial infections. Through systematic screening, we identified an optimal AIEgen, called complex <b>5</b>, which can rapidly discriminate between gram-positive (G<sup>+</sup>) and gram-negative bacteria (G<sup>−</sup>) bacteria, and exert robust and broad-spectrum antimicrobial potency against diverse drug-resistant bacterial strains, including those intractable to treat in clinic. Furthermore, extensive testing against a variety of clinical drug-resistant isolates, coupled with the successful treatment of methicillin-resistant <i>Staphylococcus aureus</i>-infected skin wounds unequivocally validates the high efficiency and broad-spectrum activity of complex <b>5</b>. Therefore, complex <b>5</b> emerges as a promising candidate for combating drug-resistant bacterial infections in clinic, and this work provides inspiration for developing new solutions to address the escalating global challenge of AMR.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
抗菌素耐药性(AMR)仍然是全球公共卫生面临的一项紧迫而严峻的挑战。开发新药物或替代疗法来解决 AMR 问题势在必行。在此,我们合理地设计并合成了一系列基于聚合诱导发射的发光剂(AIEgens),以对抗耐药细菌感染。通过系统筛选,我们确定了一种最佳的 AIE 原(称为复合物 5),它能快速区分革兰氏阳性菌(G+)和革兰氏阴性菌(G-),并能对多种耐药菌株(包括临床上难以治疗的菌株)发挥强大的广谱抗菌效力。此外,针对各种临床耐药分离菌株的广泛测试,以及耐甲氧西林金黄色葡萄球菌感染皮肤伤口的成功治疗,都明确验证了复合物 5 的高效和广谱活性。因此,复合物 5 有希望成为临床上抗击耐药细菌感染的候选药物,这项工作为开发新的解决方案以应对不断升级的全球 AMR 挑战提供了灵感。
Antimicrobial resistance (AMR) remains an urgent and formidable challenge to global public health. Developing new medicines or alternative therapies to address AMR is imperative. Herein, we rationally designed and synthesized a series of Au(I)-based aggregation-induced emission luminogens (AIEgens) to combat drug-resistant bacterial infections. Through systematic screening, we identified an optimal AIEgen, called complex 5, which can rapidly discriminate between gram-positive (G+) and gram-negative bacteria (G−) bacteria, and exert robust and broad-spectrum antimicrobial potency against diverse drug-resistant bacterial strains, including those intractable to treat in clinic. Furthermore, extensive testing against a variety of clinical drug-resistant isolates, coupled with the successful treatment of methicillin-resistant Staphylococcus aureus-infected skin wounds unequivocally validates the high efficiency and broad-spectrum activity of complex 5. Therefore, complex 5 emerges as a promising candidate for combating drug-resistant bacterial infections in clinic, and this work provides inspiration for developing new solutions to address the escalating global challenge of AMR.