{"title":"用于事件提取的多图表示法","authors":"Hui Huang , Yanping Chen , Chuan Lin , Ruizhang Huang , Qinghua Zheng , Yongbin Qin","doi":"10.1016/j.artint.2024.104144","DOIUrl":null,"url":null,"abstract":"<div><p>Event extraction has a trend in identifying event triggers and arguments in a unified framework, which has the advantage of avoiding the cascading failure in pipeline methods. The main problem is that joint models usually assume a one-to-one relationship between event triggers and arguments. It leads to the argument multiplexing problem, in which an argument mention can serve different roles in an event or shared by different events. To address this problem, we propose a multigraph-based event extraction framework. It allows parallel edges between any nodes, which is effective to represent semantic structures of an event. The framework enables the neural network to map a sentence(s) into a structurized semantic representation, which encodes multi-overlapped events. After evaluated on four public datasets, our method achieves the state-of-the-art performance, outperforming all compared models. Analytical experiments show that the multigraph representation is effective to address the argument multiplexing problem and helpful to advance the discriminability of the neural network for event extraction.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"332 ","pages":"Article 104144"},"PeriodicalIF":5.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-graph representation for event extraction\",\"authors\":\"Hui Huang , Yanping Chen , Chuan Lin , Ruizhang Huang , Qinghua Zheng , Yongbin Qin\",\"doi\":\"10.1016/j.artint.2024.104144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Event extraction has a trend in identifying event triggers and arguments in a unified framework, which has the advantage of avoiding the cascading failure in pipeline methods. The main problem is that joint models usually assume a one-to-one relationship between event triggers and arguments. It leads to the argument multiplexing problem, in which an argument mention can serve different roles in an event or shared by different events. To address this problem, we propose a multigraph-based event extraction framework. It allows parallel edges between any nodes, which is effective to represent semantic structures of an event. The framework enables the neural network to map a sentence(s) into a structurized semantic representation, which encodes multi-overlapped events. After evaluated on four public datasets, our method achieves the state-of-the-art performance, outperforming all compared models. Analytical experiments show that the multigraph representation is effective to address the argument multiplexing problem and helpful to advance the discriminability of the neural network for event extraction.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"332 \",\"pages\":\"Article 104144\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000808\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000808","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Event extraction has a trend in identifying event triggers and arguments in a unified framework, which has the advantage of avoiding the cascading failure in pipeline methods. The main problem is that joint models usually assume a one-to-one relationship between event triggers and arguments. It leads to the argument multiplexing problem, in which an argument mention can serve different roles in an event or shared by different events. To address this problem, we propose a multigraph-based event extraction framework. It allows parallel edges between any nodes, which is effective to represent semantic structures of an event. The framework enables the neural network to map a sentence(s) into a structurized semantic representation, which encodes multi-overlapped events. After evaluated on four public datasets, our method achieves the state-of-the-art performance, outperforming all compared models. Analytical experiments show that the multigraph representation is effective to address the argument multiplexing problem and helpful to advance the discriminability of the neural network for event extraction.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.