V. Santoro , M.D. Hou , I. Premoli , P. Belardinelli , A. Biondi , A. Carobin , F. Puledda , P.G. Michalopoulou , M.P. Richardson , L. Rocchi , S.S. Shergill
{"title":"调查精神分裂症患者大脑皮层的兴奋性和抑制性:TMS-EEG 研究","authors":"V. Santoro , M.D. Hou , I. Premoli , P. Belardinelli , A. Biondi , A. Carobin , F. Puledda , P.G. Michalopoulou , M.P. Richardson , L. Rocchi , S.S. Shergill","doi":"10.1016/j.brainresbull.2024.110972","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls.</p></div><div><h3>Materials and methods</h3><p>TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons.</p></div><div><h3>Results</h3><p>Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50–160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220–560 ms; 190–420 ms). Patients showed a reduction of both early (50–110 ms) gamma increase and later (180–230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms.</p></div><div><h3>Conclusion</h3><p>Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001059/pdfft?md5=b97d247b0e48e4794959f698602168df&pid=1-s2.0-S0361923024001059-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study\",\"authors\":\"V. Santoro , M.D. Hou , I. Premoli , P. Belardinelli , A. Biondi , A. Carobin , F. Puledda , P.G. Michalopoulou , M.P. Richardson , L. Rocchi , S.S. Shergill\",\"doi\":\"10.1016/j.brainresbull.2024.110972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls.</p></div><div><h3>Materials and methods</h3><p>TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons.</p></div><div><h3>Results</h3><p>Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50–160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220–560 ms; 190–420 ms). Patients showed a reduction of both early (50–110 ms) gamma increase and later (180–230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms.</p></div><div><h3>Conclusion</h3><p>Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001059/pdfft?md5=b97d247b0e48e4794959f698602168df&pid=1-s2.0-S0361923024001059-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001059\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study
Background
Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls.
Materials and methods
TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons.
Results
Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50–160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220–560 ms; 190–420 ms). Patients showed a reduction of both early (50–110 ms) gamma increase and later (180–230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms.
Conclusion
Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.