开发基于常压等离子体的 OES 设备,用于植物中镉及相关元素的原位绘图。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2024-08-01 Epub Date: 2024-05-01 DOI:10.1016/j.talanta.2024.126196
Chaoqun Geng, Tiantian Zhang, Zheng Dong, Yuan Lu, Biao Ma, Yuan Xu, Zhao Yang, Shuai Liang, Xuelu Ding
{"title":"开发基于常压等离子体的 OES 设备,用于植物中镉及相关元素的原位绘图。","authors":"Chaoqun Geng, Tiantian Zhang, Zheng Dong, Yuan Lu, Biao Ma, Yuan Xu, Zhao Yang, Shuai Liang, Xuelu Ding","doi":"10.1016/j.talanta.2024.126196","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed an innovative optical emission spectrometry imaging device integrating a diode laser for sample introduction and an atmospheric pressure plasma based on dielectric barrier discharge for atomization and excitation. By optimizing the device parameters and ensuring appropriate leaf moisture, we achieved effective imaging with a lateral resolution as low as 50 μm. This device allows for tracking the accumulation of Cd and related species such as K, Zn, and O<sub>2</sub><sup>+∙</sup>, in plant leaves exposed to different Cd levels and culture times. The results obtained are comparable to established in-lab imaging and quantitative methods. With its features of compact construction, minimal sample preparation, ease of operation, and low limit of detection (0.04 μg/g for Cd), this novel methodology shows promise as an in-situ elemental imaging tool for interdisciplinary applications.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an atmospheric pressure plasma-based OES device for in-situ mapping of Cd and related elements in plants.\",\"authors\":\"Chaoqun Geng, Tiantian Zhang, Zheng Dong, Yuan Lu, Biao Ma, Yuan Xu, Zhao Yang, Shuai Liang, Xuelu Ding\",\"doi\":\"10.1016/j.talanta.2024.126196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have developed an innovative optical emission spectrometry imaging device integrating a diode laser for sample introduction and an atmospheric pressure plasma based on dielectric barrier discharge for atomization and excitation. By optimizing the device parameters and ensuring appropriate leaf moisture, we achieved effective imaging with a lateral resolution as low as 50 μm. This device allows for tracking the accumulation of Cd and related species such as K, Zn, and O<sub>2</sub><sup>+∙</sup>, in plant leaves exposed to different Cd levels and culture times. The results obtained are comparable to established in-lab imaging and quantitative methods. With its features of compact construction, minimal sample preparation, ease of operation, and low limit of detection (0.04 μg/g for Cd), this novel methodology shows promise as an in-situ elemental imaging tool for interdisciplinary applications.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126196\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种创新的光学发射光谱成像设备,该设备集成了用于样品导入的二极管激光器和用于雾化和激发的基于介质阻挡放电的常压等离子体。通过优化设备参数并确保适当的叶片湿度,我们实现了横向分辨率低至 50 μm 的有效成像。该装置可跟踪暴露于不同镉水平和培养时间的植物叶片中镉及相关物种(如钾、锌和 O2+∙)的积累情况。所获得的结果可与实验室成像和定量方法相媲美。这种新方法结构紧凑、样品制备量小、操作简便、检测限低(镉为 0.04 微克/克),有望成为跨学科应用的原位元素成像工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an atmospheric pressure plasma-based OES device for in-situ mapping of Cd and related elements in plants.

We have developed an innovative optical emission spectrometry imaging device integrating a diode laser for sample introduction and an atmospheric pressure plasma based on dielectric barrier discharge for atomization and excitation. By optimizing the device parameters and ensuring appropriate leaf moisture, we achieved effective imaging with a lateral resolution as low as 50 μm. This device allows for tracking the accumulation of Cd and related species such as K, Zn, and O2+∙, in plant leaves exposed to different Cd levels and culture times. The results obtained are comparable to established in-lab imaging and quantitative methods. With its features of compact construction, minimal sample preparation, ease of operation, and low limit of detection (0.04 μg/g for Cd), this novel methodology shows promise as an in-situ elemental imaging tool for interdisciplinary applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
An innovative label-free electrochemical aptamer sensor: utilizing Ti3C2Tx/MoS2/Au NPs for accurate interleukin-6 detection. Selection of a new aptamer targeting amoxicillin for utilization in a label-free electrochemical biosensor. A highly sensitive nanopore platform for measuring RNase A activity. Bifunctional Tb(III)-modified Ce-MOF nanoprobe for colorimetric and fluorescence sensing of α-glucosidase activity. Automated H2O2 monitoring during photo-Fenton processes using an Arduino self-assembled automatic system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1