Thierry P C Franke, Hetty Hofstede, Anke G VAN DEN Broek, Bionka M A Huisstede
{"title":"小腿压力衣对下肢运动损伤、主观疲劳和生物力学变量的影响:系统综述与 Meta 分析》。","authors":"Thierry P C Franke, Hetty Hofstede, Anke G VAN DEN Broek, Bionka M A Huisstede","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to systematically review the literature on the effect of CGs versus non-CGs (such as regular socks) or versus placebo garments on 1) the incidence of lower extremity sports injuries and 2) subjective ratings of fatigue and biomechanical variables in athletes at participating in any sport that required any level of running performance, given that fatigue-related biomechanical alterations may increase the risk of sports injuries. This study was a systematic review with meta-analyses. PubMed, Embase, CINAHL, Cochrane, PEDro, and Scopus were searched for eligible studies until 7 July 2021. Two reviewers independently assessed the risk of bias using the Cochrane Collaboration's tool for risk of bias. Meta-analyses were performed using a random-effects model. The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence for all outcome measures. Twenty-three studies, all with a high risk of bias, were included. Nineteen studies were used in the meta-analyses. No studies focused on the effect of CGs on the incidence of lower extremity sports injuries in athletes. Seventeen studies investigated the effect of CGs on subjective ratings of fatigue, but meta-analysis showed no difference in effectiveness between CGs versus non-CGs (such as regular socks) and versus placebo CGs (low certainty evidence). Because of heterogeneity, pooling of the results was not possible for the biomechanical variables. Nonetheless, low certainty evidence showed no effect of CGs. We identified no evidence for a beneficial or detrimental effect of lower leg CGs on the occurrence of lower extremity sports injuries, subjective ratings of fatigue, or biomechanical variables in athletes at any level of running performance. Based on the variable use of running tests, definitions used for biomechanical variables, and reporting of CG characteristics and more standardized reporting is recommended for future studies evaluating CGs.</p>","PeriodicalId":14171,"journal":{"name":"International journal of exercise science","volume":"17 6","pages":"445-467"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042856/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effects of Lower Leg Compression Garments on Lower Extremity Sports Injuries, Subjective Fatigue and Biomechanical Variables: A Systematic Review with Meta-analysis.\",\"authors\":\"Thierry P C Franke, Hetty Hofstede, Anke G VAN DEN Broek, Bionka M A Huisstede\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to systematically review the literature on the effect of CGs versus non-CGs (such as regular socks) or versus placebo garments on 1) the incidence of lower extremity sports injuries and 2) subjective ratings of fatigue and biomechanical variables in athletes at participating in any sport that required any level of running performance, given that fatigue-related biomechanical alterations may increase the risk of sports injuries. This study was a systematic review with meta-analyses. PubMed, Embase, CINAHL, Cochrane, PEDro, and Scopus were searched for eligible studies until 7 July 2021. Two reviewers independently assessed the risk of bias using the Cochrane Collaboration's tool for risk of bias. Meta-analyses were performed using a random-effects model. The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence for all outcome measures. Twenty-three studies, all with a high risk of bias, were included. Nineteen studies were used in the meta-analyses. No studies focused on the effect of CGs on the incidence of lower extremity sports injuries in athletes. Seventeen studies investigated the effect of CGs on subjective ratings of fatigue, but meta-analysis showed no difference in effectiveness between CGs versus non-CGs (such as regular socks) and versus placebo CGs (low certainty evidence). Because of heterogeneity, pooling of the results was not possible for the biomechanical variables. Nonetheless, low certainty evidence showed no effect of CGs. We identified no evidence for a beneficial or detrimental effect of lower leg CGs on the occurrence of lower extremity sports injuries, subjective ratings of fatigue, or biomechanical variables in athletes at any level of running performance. Based on the variable use of running tests, definitions used for biomechanical variables, and reporting of CG characteristics and more standardized reporting is recommended for future studies evaluating CGs.</p>\",\"PeriodicalId\":14171,\"journal\":{\"name\":\"International journal of exercise science\",\"volume\":\"17 6\",\"pages\":\"445-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of exercise science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of exercise science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
The Effects of Lower Leg Compression Garments on Lower Extremity Sports Injuries, Subjective Fatigue and Biomechanical Variables: A Systematic Review with Meta-analysis.
The objective of this study was to systematically review the literature on the effect of CGs versus non-CGs (such as regular socks) or versus placebo garments on 1) the incidence of lower extremity sports injuries and 2) subjective ratings of fatigue and biomechanical variables in athletes at participating in any sport that required any level of running performance, given that fatigue-related biomechanical alterations may increase the risk of sports injuries. This study was a systematic review with meta-analyses. PubMed, Embase, CINAHL, Cochrane, PEDro, and Scopus were searched for eligible studies until 7 July 2021. Two reviewers independently assessed the risk of bias using the Cochrane Collaboration's tool for risk of bias. Meta-analyses were performed using a random-effects model. The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence for all outcome measures. Twenty-three studies, all with a high risk of bias, were included. Nineteen studies were used in the meta-analyses. No studies focused on the effect of CGs on the incidence of lower extremity sports injuries in athletes. Seventeen studies investigated the effect of CGs on subjective ratings of fatigue, but meta-analysis showed no difference in effectiveness between CGs versus non-CGs (such as regular socks) and versus placebo CGs (low certainty evidence). Because of heterogeneity, pooling of the results was not possible for the biomechanical variables. Nonetheless, low certainty evidence showed no effect of CGs. We identified no evidence for a beneficial or detrimental effect of lower leg CGs on the occurrence of lower extremity sports injuries, subjective ratings of fatigue, or biomechanical variables in athletes at any level of running performance. Based on the variable use of running tests, definitions used for biomechanical variables, and reporting of CG characteristics and more standardized reporting is recommended for future studies evaluating CGs.