Mohamed S Mansour, Amira A Mahmoud, Mohannad A Sayah, Zahraa N Mohamed, Mohammed A Hussein, Diana A ALsherif
{"title":"RES-CMCNPs可增强EAC小鼠的抗氧化性、促炎性以及肿瘤实体对γ-照射的敏感性。","authors":"Mohamed S Mansour, Amira A Mahmoud, Mohannad A Sayah, Zahraa N Mohamed, Mohammed A Hussein, Diana A ALsherif","doi":"10.2174/0122117385290497240324190453","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice. </P> Methods: Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated in vitro and in vivo against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice. </P> Results: The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 230 and 250 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60 %, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC50 values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 µg after 24-, 48- and 72 h incubation, respectively, whereas those of ResCMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 µg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of ResCMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of ResCMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression. </P> Conclusion: Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer by potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-Irradiation in EAC-Bearing Mice.\",\"authors\":\"Mohamed S Mansour, Amira A Mahmoud, Mohannad A Sayah, Zahraa N Mohamed, Mohammed A Hussein, Diana A ALsherif\",\"doi\":\"10.2174/0122117385290497240324190453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice. </P> Methods: Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated in vitro and in vivo against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice. </P> Results: The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 230 and 250 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60 %, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC50 values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 µg after 24-, 48- and 72 h incubation, respectively, whereas those of ResCMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 µg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of ResCMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of ResCMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression. </P> Conclusion: Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer by potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385290497240324190453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385290497240324190453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-Irradiation in EAC-Bearing Mice.
Objectives: Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice.
Methods: Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated in vitro and in vivo against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice. Results: The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 230 and 250 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60 %, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC50 values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 µg after 24-, 48- and 72 h incubation, respectively, whereas those of ResCMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 µg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of ResCMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of ResCMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression. Conclusion: Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer by potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.