{"title":"Regnase-1 D141N突变通过上调Pim2诱导CD4+ T细胞介导的肺肉芽肿形成。","authors":"Thin Sandi Htun, Hiroki Tanaka, Shailendra Kumar Singh, Diego Diez, Shizuo Akira","doi":"10.1093/intimm/dxae026","DOIUrl":null,"url":null,"abstract":"<p><p>Regnase-1 is an RNase that plays a critical role in negatively regulating immune responses by destabilizing inflammatory messenger RNAs (mRNAs). Dysfunction of Regnase-1 can be a major cause of various inflammatory diseases with tissue injury and immune cell infiltration into organs. This study focuses on the role of the RNase activity of Regnase-1 in developing inflammatory diseases. We have constructed mice with a single point mutation at the catalytic center of the Regnase-1 RNase domain, which lacks endonuclease activity. D141N mutant mice demonstrated systemic inflammation, immune cell infiltration into various organs, and progressive development of lung granuloma. CD4+ T cells, mainly affected by this mutation, upregulated the mTORC1 pathway and facilitated the autoimmune trait in the D141N mutation. Moreover, serine/threonine kinase Pim2 contributed to lung inflammation in this mutation. Inhibition of Pim2 kinase activity ameliorated granulomatous inflammation, immune cell infiltration, and proliferation in the lungs. Additionally, Pim2 inhibition reduced the expression of adhesion molecules on CD4+ T cells, suggesting a role for Pim2 in facilitating leukocyte adhesion and migration to inflamed tissues. Our findings provide new insights into the role of Regnase-1 RNase activity in controlling immune functions and underscore the therapeutic relevance of targeting Pim2 to modulate abnormal immune responses.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"497-516"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regnase-1 D141N mutation induces CD4+ T cell-mediated lung granuloma formation via upregulation of Pim2.\",\"authors\":\"Thin Sandi Htun, Hiroki Tanaka, Shailendra Kumar Singh, Diego Diez, Shizuo Akira\",\"doi\":\"10.1093/intimm/dxae026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regnase-1 is an RNase that plays a critical role in negatively regulating immune responses by destabilizing inflammatory messenger RNAs (mRNAs). Dysfunction of Regnase-1 can be a major cause of various inflammatory diseases with tissue injury and immune cell infiltration into organs. This study focuses on the role of the RNase activity of Regnase-1 in developing inflammatory diseases. We have constructed mice with a single point mutation at the catalytic center of the Regnase-1 RNase domain, which lacks endonuclease activity. D141N mutant mice demonstrated systemic inflammation, immune cell infiltration into various organs, and progressive development of lung granuloma. CD4+ T cells, mainly affected by this mutation, upregulated the mTORC1 pathway and facilitated the autoimmune trait in the D141N mutation. Moreover, serine/threonine kinase Pim2 contributed to lung inflammation in this mutation. Inhibition of Pim2 kinase activity ameliorated granulomatous inflammation, immune cell infiltration, and proliferation in the lungs. Additionally, Pim2 inhibition reduced the expression of adhesion molecules on CD4+ T cells, suggesting a role for Pim2 in facilitating leukocyte adhesion and migration to inflamed tissues. Our findings provide new insights into the role of Regnase-1 RNase activity in controlling immune functions and underscore the therapeutic relevance of targeting Pim2 to modulate abnormal immune responses.</p>\",\"PeriodicalId\":13743,\"journal\":{\"name\":\"International immunology\",\"volume\":\" \",\"pages\":\"497-516\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/intimm/dxae026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxae026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Regnase-1 D141N mutation induces CD4+ T cell-mediated lung granuloma formation via upregulation of Pim2.
Regnase-1 is an RNase that plays a critical role in negatively regulating immune responses by destabilizing inflammatory messenger RNAs (mRNAs). Dysfunction of Regnase-1 can be a major cause of various inflammatory diseases with tissue injury and immune cell infiltration into organs. This study focuses on the role of the RNase activity of Regnase-1 in developing inflammatory diseases. We have constructed mice with a single point mutation at the catalytic center of the Regnase-1 RNase domain, which lacks endonuclease activity. D141N mutant mice demonstrated systemic inflammation, immune cell infiltration into various organs, and progressive development of lung granuloma. CD4+ T cells, mainly affected by this mutation, upregulated the mTORC1 pathway and facilitated the autoimmune trait in the D141N mutation. Moreover, serine/threonine kinase Pim2 contributed to lung inflammation in this mutation. Inhibition of Pim2 kinase activity ameliorated granulomatous inflammation, immune cell infiltration, and proliferation in the lungs. Additionally, Pim2 inhibition reduced the expression of adhesion molecules on CD4+ T cells, suggesting a role for Pim2 in facilitating leukocyte adhesion and migration to inflamed tissues. Our findings provide new insights into the role of Regnase-1 RNase activity in controlling immune functions and underscore the therapeutic relevance of targeting Pim2 to modulate abnormal immune responses.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.