根据直接观察验证捕捉人体运动的加速度计技术:范围审查。

IF 2.3 4区 医学 Q3 BIOPHYSICS Physiological measurement Pub Date : 2024-08-01 DOI:10.1088/1361-6579/ad45aa
Elyse Letts, Josephine S Jakubowski, Sara King-Dowling, Kimberly Clevenger, Dylan Kobsar, Joyce Obeid
{"title":"根据直接观察验证捕捉人体运动的加速度计技术:范围审查。","authors":"Elyse Letts, Josephine S Jakubowski, Sara King-Dowling, Kimberly Clevenger, Dylan Kobsar, Joyce Obeid","doi":"10.1088/1361-6579/ad45aa","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Accelerometers are devices commonly used to measure human physical activity and sedentary time. Accelerometer capabilities and analytical techniques have evolved rapidly, making it difficult for researchers to keep track of advances and best practices for data processing and analysis. The objective of this scoping review is to determine the existing methods for analyzing accelerometer data for capturing human movement which have been validated against the criterion measure of direct observation.<i>Approach.</i>This scoping review searched 14 academic and 5 grey databases. Two independent raters screened by title and abstract, then full text. Data were extracted using Microsoft Excel and checked by an independent reviewer.<i>Main</i><i>results.</i>The search yielded 1039 papers and the final analysis included 115 papers. A total of 71 unique accelerometer models were used across a total of 4217 participants. While all studies underwent validation from direct observation, most direct observation occurred live (55%) or using recordings (42%). Analysis techniques included machine learning (ML) approaches (22%), the use of existing cut-points (18%), receiver operating characteristic curves to determine cut-points (14%), and other strategies including regressions and non-ML algorithms (8%).<i>Significance.</i>ML techniques are becoming more prevalent and are often used for activity identification. Cut-point methods are still frequently used. Activity intensity is the most assessed activity outcome; however, both the analyses and outcomes assessed vary by wear location. This scoping review provides a comprehensive overview of accelerometer analysis and validation techniques using direct observation and is a useful tool for researchers using accelerometers.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerometer techniques for capturing human movement validated against direct observation: a scoping review.\",\"authors\":\"Elyse Letts, Josephine S Jakubowski, Sara King-Dowling, Kimberly Clevenger, Dylan Kobsar, Joyce Obeid\",\"doi\":\"10.1088/1361-6579/ad45aa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Accelerometers are devices commonly used to measure human physical activity and sedentary time. Accelerometer capabilities and analytical techniques have evolved rapidly, making it difficult for researchers to keep track of advances and best practices for data processing and analysis. The objective of this scoping review is to determine the existing methods for analyzing accelerometer data for capturing human movement which have been validated against the criterion measure of direct observation.<i>Approach.</i>This scoping review searched 14 academic and 5 grey databases. Two independent raters screened by title and abstract, then full text. Data were extracted using Microsoft Excel and checked by an independent reviewer.<i>Main</i><i>results.</i>The search yielded 1039 papers and the final analysis included 115 papers. A total of 71 unique accelerometer models were used across a total of 4217 participants. While all studies underwent validation from direct observation, most direct observation occurred live (55%) or using recordings (42%). Analysis techniques included machine learning (ML) approaches (22%), the use of existing cut-points (18%), receiver operating characteristic curves to determine cut-points (14%), and other strategies including regressions and non-ML algorithms (8%).<i>Significance.</i>ML techniques are becoming more prevalent and are often used for activity identification. Cut-point methods are still frequently used. Activity intensity is the most assessed activity outcome; however, both the analyses and outcomes assessed vary by wear location. This scoping review provides a comprehensive overview of accelerometer analysis and validation techniques using direct observation and is a useful tool for researchers using accelerometers.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad45aa\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad45aa","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

简介加速计是测量人类体力活动和久坐时间的常用设备。加速度计的功能和分析技术发展迅速,使研究人员难以跟踪数据处理和分析的进展和最佳实践:本次范围审查的目的是确定现有的用于捕捉人体运动的加速度计数据分析方法,这些方法已根据直接观察的标准措施进行了验证:本范围界定综述检索了 14 个学术数据库和 5 个灰色数据库。两名独立的评定员先根据标题和摘要进行筛选,然后再筛选全文。使用 Microsoft Excel 提取数据,并由一名独立评审员进行检查:结果:搜索结果包括 1039 篇论文,最终分析包括 115 篇论文。共有 4217 名参与者使用了 71 种不同的加速度计模型。虽然所有研究都通过直接观察进行了验证,但大多数直接观察都是现场进行的(55%)或使用录音进行的(42%)。分析技术包括机器学习方法(22%)、使用现有切点(18%)、ROC 曲线确定切点(14%)以及包括回归和非机器学习算法在内的其他策略(8%):讨论:机器学习技术正变得越来越普遍,并经常用于活动识别。切点法仍经常使用。活动强度是评估最多的活动结果;然而,不同的穿戴地点所评估的分析和结果也不尽相同:本范围综述全面概述了使用直接观察法对加速度计进行分析和验证的技术,是使用加速度计的研究人员的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerometer techniques for capturing human movement validated against direct observation: a scoping review.

Objective.Accelerometers are devices commonly used to measure human physical activity and sedentary time. Accelerometer capabilities and analytical techniques have evolved rapidly, making it difficult for researchers to keep track of advances and best practices for data processing and analysis. The objective of this scoping review is to determine the existing methods for analyzing accelerometer data for capturing human movement which have been validated against the criterion measure of direct observation.Approach.This scoping review searched 14 academic and 5 grey databases. Two independent raters screened by title and abstract, then full text. Data were extracted using Microsoft Excel and checked by an independent reviewer.Mainresults.The search yielded 1039 papers and the final analysis included 115 papers. A total of 71 unique accelerometer models were used across a total of 4217 participants. While all studies underwent validation from direct observation, most direct observation occurred live (55%) or using recordings (42%). Analysis techniques included machine learning (ML) approaches (22%), the use of existing cut-points (18%), receiver operating characteristic curves to determine cut-points (14%), and other strategies including regressions and non-ML algorithms (8%).Significance.ML techniques are becoming more prevalent and are often used for activity identification. Cut-point methods are still frequently used. Activity intensity is the most assessed activity outcome; however, both the analyses and outcomes assessed vary by wear location. This scoping review provides a comprehensive overview of accelerometer analysis and validation techniques using direct observation and is a useful tool for researchers using accelerometers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
期刊最新文献
Telephone training to improve ECG quality in remote screening for atrial fibrillation. Amplitude spectrum area is dependent on the electrocardiogram magnitude: evaluation of different normalization approaches. Comparison of automatic and physiologically-based feature selection methods for classifying physiological stress using heart rate and pulse rate variability indices. Beat the heat: wearable-based study of perceived heat stress and physiological strain in Swiss track workers in a controlled climate chamber. A skewed-Gaussian model for pulse decomposition analysis of photoplethysmography signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1