{"title":"早期胚胎极性的建立及其对系分化的影响。","authors":"Yi Zhu, Xue-Qin Chen, Li-Zhi Leng, Ge Lin","doi":"10.16288/j.yczz.23-268","DOIUrl":null,"url":null,"abstract":"<p><p>Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 3","pages":"199-208"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early embryonic polarity establishment and implications for lineage differentiation.\",\"authors\":\"Yi Zhu, Xue-Qin Chen, Li-Zhi Leng, Ge Lin\",\"doi\":\"10.16288/j.yczz.23-268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"46 3\",\"pages\":\"199-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.23-268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Early embryonic polarity establishment and implications for lineage differentiation.
Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.