Shu-Jie Liang, Yi-Hua Peng, Jia-Hong Lei, Ai-Min Jia, Hong Jiang, Yan Cai
{"title":"转录因子 HNF1α 基因 c.493T>C 位点突变对其蛋白水平的影响","authors":"Shu-Jie Liang, Yi-Hua Peng, Jia-Hong Lei, Ai-Min Jia, Hong Jiang, Yan Cai","doi":"10.16288/j.yczz.23-274","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic β-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 3","pages":"256-262"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mutation at c.493T>C locus of transcription factor HNF1α gene on its protein level.\",\"authors\":\"Shu-Jie Liang, Yi-Hua Peng, Jia-Hong Lei, Ai-Min Jia, Hong Jiang, Yan Cai\",\"doi\":\"10.16288/j.yczz.23-274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic β-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"46 3\",\"pages\":\"256-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.23-274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Effect of mutation at c.493T>C locus of transcription factor HNF1α gene on its protein level.
Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic β-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.