Yaqi Cao, Weidong Ma, Ge Zhao, Anne Marie McCarthy, Jinbo Chen
{"title":"开发校准良好的二元结果预测模型的受限最大似然法。","authors":"Yaqi Cao, Weidong Ma, Ge Zhao, Anne Marie McCarthy, Jinbo Chen","doi":"10.1007/s10985-024-09628-9","DOIUrl":null,"url":null,"abstract":"<p><p>The added value of candidate predictors for risk modeling is routinely evaluated by comparing the performance of models with or without including candidate predictors. Such comparison is most meaningful when the estimated risk by the two models are both unbiased in the target population. Very often data for candidate predictors are sourced from nonrepresentative convenience samples. Updating the base model using the study data without acknowledging the discrepancy between the underlying distribution of the study data and that in the target population can lead to biased risk estimates and therefore an unfair evaluation of candidate predictors. To address this issue assuming access to a well-calibrated base model, we propose a semiparametric method for model fitting that enforces good calibration. The central idea is to calibrate the fitted model against the base model by enforcing suitable constraints in maximizing the likelihood function. This approach enables unbiased assessment of model improvement offered by candidate predictors without requiring a representative sample from the target population, thus overcoming a significant practical challenge. We study theoretical properties for model parameter estimates, and demonstrate improvement in model calibration via extensive simulation studies. Finally, we apply the proposed method to data extracted from Penn Medicine Biobank to inform the added value of breast density for breast cancer risk assessment in the Caucasian woman population.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A constrained maximum likelihood approach to developing well-calibrated models for predicting binary outcomes.\",\"authors\":\"Yaqi Cao, Weidong Ma, Ge Zhao, Anne Marie McCarthy, Jinbo Chen\",\"doi\":\"10.1007/s10985-024-09628-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The added value of candidate predictors for risk modeling is routinely evaluated by comparing the performance of models with or without including candidate predictors. Such comparison is most meaningful when the estimated risk by the two models are both unbiased in the target population. Very often data for candidate predictors are sourced from nonrepresentative convenience samples. Updating the base model using the study data without acknowledging the discrepancy between the underlying distribution of the study data and that in the target population can lead to biased risk estimates and therefore an unfair evaluation of candidate predictors. To address this issue assuming access to a well-calibrated base model, we propose a semiparametric method for model fitting that enforces good calibration. The central idea is to calibrate the fitted model against the base model by enforcing suitable constraints in maximizing the likelihood function. This approach enables unbiased assessment of model improvement offered by candidate predictors without requiring a representative sample from the target population, thus overcoming a significant practical challenge. We study theoretical properties for model parameter estimates, and demonstrate improvement in model calibration via extensive simulation studies. Finally, we apply the proposed method to data extracted from Penn Medicine Biobank to inform the added value of breast density for breast cancer risk assessment in the Caucasian woman population.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09628-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09628-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A constrained maximum likelihood approach to developing well-calibrated models for predicting binary outcomes.
The added value of candidate predictors for risk modeling is routinely evaluated by comparing the performance of models with or without including candidate predictors. Such comparison is most meaningful when the estimated risk by the two models are both unbiased in the target population. Very often data for candidate predictors are sourced from nonrepresentative convenience samples. Updating the base model using the study data without acknowledging the discrepancy between the underlying distribution of the study data and that in the target population can lead to biased risk estimates and therefore an unfair evaluation of candidate predictors. To address this issue assuming access to a well-calibrated base model, we propose a semiparametric method for model fitting that enforces good calibration. The central idea is to calibrate the fitted model against the base model by enforcing suitable constraints in maximizing the likelihood function. This approach enables unbiased assessment of model improvement offered by candidate predictors without requiring a representative sample from the target population, thus overcoming a significant practical challenge. We study theoretical properties for model parameter estimates, and demonstrate improvement in model calibration via extensive simulation studies. Finally, we apply the proposed method to data extracted from Penn Medicine Biobank to inform the added value of breast density for breast cancer risk assessment in the Caucasian woman population.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.