超参数化 MIROC 中赤道开尔文波的再现性: 1. Blockwise 耦合 SP-MIROC 的实施与验证

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-05-07 DOI:10.1029/2023MS003836
K. Yamazaki, H. Miura
{"title":"超参数化 MIROC 中赤道开尔文波的再现性: 1. Blockwise 耦合 SP-MIROC 的实施与验证","authors":"K. Yamazaki,&nbsp;H. Miura","doi":"10.1029/2023MS003836","DOIUrl":null,"url":null,"abstract":"<p>The potential scope of superparameterization (SP) was extended to higher resolutions of the global climate model (GCM) component by devising a technique called blockwise coupling. In this method, a horizontal average of multiple GCM columns, instead of one, is coupled to a cloud-resolving model (CRM) domain. This enables SP-GCMs to reduce the computational cost drastically, enabling higher-resolution GCMs to be superparameterized. A blockwise-coupled SP-GCM called SP-MIROC was implemented by coupling the climate model MIROC6 to the CRM SCALE-RM. The 4 × 4-bundled SP-MIROC successfully reproduced horizontal patterns and frequency distributions of precipitation and realistic amplitudes of equatorial Kelvin waves (EKWs), which were underestimated in the standard MIROC6. As discussed in Yamazaki and Miura (2024b, https://doi.org/10.1029/2023MS003837) of this study, the amplitude boost of EKWs was enabled by a top-heavy heating in SP-MIROC. Comparison of power spectra between the 4 × 4-bundled SP-MIROC and nonbundled SP-MIROC indicated that the effective resolution of dynamic variables was not degraded by the blockwise technique. Rather, spectra in the 4 × 4-bundled SP-MIROC were more realistic than those in the nonbundled SP-MIROC. Although the 4 × 4-bundling limits convective coupling in the smallest GCM scale, it could offer the best match of resolutions between the GCM-handled dynamics and SP-derived physics because the effective resolution of the dynamics is lower than the nominal grid spacing.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003836","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of Equatorial Kelvin Waves in a Superparameterized MIROC: 1. Implementation and Verification of Blockwise-Coupled SP-MIROC\",\"authors\":\"K. Yamazaki,&nbsp;H. Miura\",\"doi\":\"10.1029/2023MS003836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The potential scope of superparameterization (SP) was extended to higher resolutions of the global climate model (GCM) component by devising a technique called blockwise coupling. In this method, a horizontal average of multiple GCM columns, instead of one, is coupled to a cloud-resolving model (CRM) domain. This enables SP-GCMs to reduce the computational cost drastically, enabling higher-resolution GCMs to be superparameterized. A blockwise-coupled SP-GCM called SP-MIROC was implemented by coupling the climate model MIROC6 to the CRM SCALE-RM. The 4 × 4-bundled SP-MIROC successfully reproduced horizontal patterns and frequency distributions of precipitation and realistic amplitudes of equatorial Kelvin waves (EKWs), which were underestimated in the standard MIROC6. As discussed in Yamazaki and Miura (2024b, https://doi.org/10.1029/2023MS003837) of this study, the amplitude boost of EKWs was enabled by a top-heavy heating in SP-MIROC. Comparison of power spectra between the 4 × 4-bundled SP-MIROC and nonbundled SP-MIROC indicated that the effective resolution of dynamic variables was not degraded by the blockwise technique. Rather, spectra in the 4 × 4-bundled SP-MIROC were more realistic than those in the nonbundled SP-MIROC. Although the 4 × 4-bundling limits convective coupling in the smallest GCM scale, it could offer the best match of resolutions between the GCM-handled dynamics and SP-derived physics because the effective resolution of the dynamics is lower than the nominal grid spacing.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003836\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003836\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003836","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过设计一种称为 "顺时针耦合 "的技术,超参数化(SP)的潜在范围被扩展到更高分辨率的全球气候模式(GCM)部分。在这种方法中,多个 GCM 柱(而不是一个)的水平平均值与云解析模式 (CRM) 域耦合。这使得 SP-GCM 的计算成本大大降低,从而可以对更高分辨率的 GCM 进行超参数化。通过将气候模式 MIROC6 与 CRM SCALE-RM 相结合,实现了一个名为 SP-MIROC 的块状耦合 SP-GCM。4 × 4 捆绑的 SP-MIROC 成功地再现了降水的水平模式和频率分布,以及标准 MIROC6 低估的赤道开尔文波 (EKW) 的实际振幅。正如 Yamazaki 和 Miura(2024b,https://doi.org/10.1029/2023MS003837)在本研究中所讨论的那样,SP-MIROC 中的头重脚轻加热使 EKW 的振幅增大。对 4 × 4 捆绑式 SP-MIROC 和非捆绑式 SP-MIROC 的功率谱进行比较后发现,动态变量的有效分辨率并没有因为采用顺时针技术而降低。相反,4 × 4 捆绑 SP-MIROC 中的光谱比无捆绑 SP-MIROC 中的光谱更真实。虽然 4 × 4 捆绑限制了最小 GCM 尺度的对流耦合,但由于动力学的有效分辨率低于标称网格间距,因此它可以提供 GCM 处理的动力学和 SP 衍生物理学之间的最佳匹配分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reproducibility of Equatorial Kelvin Waves in a Superparameterized MIROC: 1. Implementation and Verification of Blockwise-Coupled SP-MIROC

The potential scope of superparameterization (SP) was extended to higher resolutions of the global climate model (GCM) component by devising a technique called blockwise coupling. In this method, a horizontal average of multiple GCM columns, instead of one, is coupled to a cloud-resolving model (CRM) domain. This enables SP-GCMs to reduce the computational cost drastically, enabling higher-resolution GCMs to be superparameterized. A blockwise-coupled SP-GCM called SP-MIROC was implemented by coupling the climate model MIROC6 to the CRM SCALE-RM. The 4 × 4-bundled SP-MIROC successfully reproduced horizontal patterns and frequency distributions of precipitation and realistic amplitudes of equatorial Kelvin waves (EKWs), which were underestimated in the standard MIROC6. As discussed in Yamazaki and Miura (2024b, https://doi.org/10.1029/2023MS003837) of this study, the amplitude boost of EKWs was enabled by a top-heavy heating in SP-MIROC. Comparison of power spectra between the 4 × 4-bundled SP-MIROC and nonbundled SP-MIROC indicated that the effective resolution of dynamic variables was not degraded by the blockwise technique. Rather, spectra in the 4 × 4-bundled SP-MIROC were more realistic than those in the nonbundled SP-MIROC. Although the 4 × 4-bundling limits convective coupling in the smallest GCM scale, it could offer the best match of resolutions between the GCM-handled dynamics and SP-derived physics because the effective resolution of the dynamics is lower than the nominal grid spacing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Reduction of the Tropical Atmospheric Dynamics Into Shallow-Water Analogs: A Formulation Analysis Circumpolar Transport and Overturning Strength Inferred From Satellite Observables Using Deep Learning in an Eddying Southern Ocean Channel Model Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5) Coupling Soil Erosion and Sediment Transport Processes With the Variable Infiltration Capacity Model (VIC-SED) for Applications Suitable With Coarse Spatial and Temporal Resolutions Using Shortened Spin-Ups to Speed Up Ocean Biogeochemical Model Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1