Hao Wang, Bin Sun, Shuzhi Sam Ge, Jie Su, Ming Liang Jin
{"title":"关于非冯诺依曼柔性神经形态视觉传感器","authors":"Hao Wang, Bin Sun, Shuzhi Sam Ge, Jie Su, Ming Liang Jin","doi":"10.1038/s41528-024-00313-3","DOIUrl":null,"url":null,"abstract":"The structure and mechanism of the human visual system contain rich treasures, and surprising effects can be achieved by simulating the human visual system. In this article, starting from the human visual system, we compare and discuss the discrepancies between the human visual system and traditional machine vision systems. Given the wide variety and large volume of visual information, the use of non-von Neumann structured, flexible neuromorphic vision sensors can effectively compensate for the limitations of traditional machine vision systems based on the von Neumann architecture. Firstly, this article addresses the emulation of retinal functionality and provides an overview of the principles and circuit implementation methods of non-von Neumann computing architectures. Secondly, in terms of mimicking the retinal surface structure, this article introduces the fabrication approach for flexible sensor arrays. Finally, this article analyzes the challenges currently faced by non-von Neumann flexible neuromorphic vision sensors and offers a perspective on their future development.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-26"},"PeriodicalIF":12.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00313-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On non-von Neumann flexible neuromorphic vision sensors\",\"authors\":\"Hao Wang, Bin Sun, Shuzhi Sam Ge, Jie Su, Ming Liang Jin\",\"doi\":\"10.1038/s41528-024-00313-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure and mechanism of the human visual system contain rich treasures, and surprising effects can be achieved by simulating the human visual system. In this article, starting from the human visual system, we compare and discuss the discrepancies between the human visual system and traditional machine vision systems. Given the wide variety and large volume of visual information, the use of non-von Neumann structured, flexible neuromorphic vision sensors can effectively compensate for the limitations of traditional machine vision systems based on the von Neumann architecture. Firstly, this article addresses the emulation of retinal functionality and provides an overview of the principles and circuit implementation methods of non-von Neumann computing architectures. Secondly, in terms of mimicking the retinal surface structure, this article introduces the fabrication approach for flexible sensor arrays. Finally, this article analyzes the challenges currently faced by non-von Neumann flexible neuromorphic vision sensors and offers a perspective on their future development.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00313-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00313-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00313-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On non-von Neumann flexible neuromorphic vision sensors
The structure and mechanism of the human visual system contain rich treasures, and surprising effects can be achieved by simulating the human visual system. In this article, starting from the human visual system, we compare and discuss the discrepancies between the human visual system and traditional machine vision systems. Given the wide variety and large volume of visual information, the use of non-von Neumann structured, flexible neuromorphic vision sensors can effectively compensate for the limitations of traditional machine vision systems based on the von Neumann architecture. Firstly, this article addresses the emulation of retinal functionality and provides an overview of the principles and circuit implementation methods of non-von Neumann computing architectures. Secondly, in terms of mimicking the retinal surface structure, this article introduces the fabrication approach for flexible sensor arrays. Finally, this article analyzes the challenges currently faced by non-von Neumann flexible neuromorphic vision sensors and offers a perspective on their future development.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.