用于路面裂缝分割的轻量级特征关注融合网络

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-08 DOI:10.1111/mice.13225
Yucheng Huang, Yuchen Liu, Fang Liu, Wei Liu
{"title":"用于路面裂缝分割的轻量级特征关注融合网络","authors":"Yucheng Huang, Yuchen Liu, Fang Liu, Wei Liu","doi":"10.1111/mice.13225","DOIUrl":null,"url":null,"abstract":"The occurrence of pavement cracks poses a significant potential threat to road safety, thus the rapid and accurate acquisition of pavement crack information is of paramount importance. Deep learning methods have the capability to offer precise and automated crack detection solutions based on crack images. However, the slow detection speed and huge model size in high-accuracy models are still the main challenges required to be addressed. Therefore, this research presents a lightweight feature attention fusion network for pavement crack segmentation. This structure employs FasterNet as the backbone network, ensuring performance while reducing model inference time and memory overhead. Additionally, the receptive field block is incorporated to simulate human visual perception, enhancing the network's feature extraction capability. Ultimately, our approach employs the feature fusion module (FFM) to effectively combine decoder outputs with encoder's low-level features using weight vectors. Experimental results on public crack datasets, namely, CFD, CRACK500, and DeepCrack, demonstrate that compared to other semantic segmentation algorithms, the proposed method achieves both accurate and comprehensive pavement crack extraction while ensuring speed.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lightweight feature attention fusion network for pavement crack segmentation\",\"authors\":\"Yucheng Huang, Yuchen Liu, Fang Liu, Wei Liu\",\"doi\":\"10.1111/mice.13225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of pavement cracks poses a significant potential threat to road safety, thus the rapid and accurate acquisition of pavement crack information is of paramount importance. Deep learning methods have the capability to offer precise and automated crack detection solutions based on crack images. However, the slow detection speed and huge model size in high-accuracy models are still the main challenges required to be addressed. Therefore, this research presents a lightweight feature attention fusion network for pavement crack segmentation. This structure employs FasterNet as the backbone network, ensuring performance while reducing model inference time and memory overhead. Additionally, the receptive field block is incorporated to simulate human visual perception, enhancing the network's feature extraction capability. Ultimately, our approach employs the feature fusion module (FFM) to effectively combine decoder outputs with encoder's low-level features using weight vectors. Experimental results on public crack datasets, namely, CFD, CRACK500, and DeepCrack, demonstrate that compared to other semantic segmentation algorithms, the proposed method achieves both accurate and comprehensive pavement crack extraction while ensuring speed.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13225\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13225","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

路面裂缝的出现对道路安全构成了巨大的潜在威胁,因此快速准确地获取路面裂缝信息至关重要。深度学习方法能够基于裂缝图像提供精确的自动裂缝检测解决方案。然而,在高精度模型中,检测速度慢和模型体积庞大仍然是需要解决的主要挑战。因此,本研究提出了一种用于路面裂缝分割的轻量级特征关注融合网络。该结构采用 FasterNet 作为骨干网络,在确保性能的同时减少了模型推理时间和内存开销。此外,为了模拟人类的视觉感知,我们还加入了感受野块,从而增强了网络的特征提取能力。最后,我们的方法采用了特征融合模块(FFM),利用权重向量将解码器输出与编码器的底层特征有效结合。在 CFD、CRACK500 和 DeepCrack 等公共裂缝数据集上的实验结果表明,与其他语义分割算法相比,所提出的方法既能实现准确、全面的路面裂缝提取,又能保证速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A lightweight feature attention fusion network for pavement crack segmentation
The occurrence of pavement cracks poses a significant potential threat to road safety, thus the rapid and accurate acquisition of pavement crack information is of paramount importance. Deep learning methods have the capability to offer precise and automated crack detection solutions based on crack images. However, the slow detection speed and huge model size in high-accuracy models are still the main challenges required to be addressed. Therefore, this research presents a lightweight feature attention fusion network for pavement crack segmentation. This structure employs FasterNet as the backbone network, ensuring performance while reducing model inference time and memory overhead. Additionally, the receptive field block is incorporated to simulate human visual perception, enhancing the network's feature extraction capability. Ultimately, our approach employs the feature fusion module (FFM) to effectively combine decoder outputs with encoder's low-level features using weight vectors. Experimental results on public crack datasets, namely, CFD, CRACK500, and DeepCrack, demonstrate that compared to other semantic segmentation algorithms, the proposed method achieves both accurate and comprehensive pavement crack extraction while ensuring speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1