Liu Qirui, Muhammad Faisal, Sarmad Ali, Nisar Ali, Li Nian, Adnan Khan, Sumeet Malik, Muhammad Farhan, Nauman Ali, Umme Kalsoom
{"title":"用于高效光催化修复废水中有机污染物的三元金属氧化物-壳聚糖杂化物","authors":"Liu Qirui, Muhammad Faisal, Sarmad Ali, Nisar Ali, Li Nian, Adnan Khan, Sumeet Malik, Muhammad Farhan, Nauman Ali, Umme Kalsoom","doi":"10.1007/s11244-024-01942-8","DOIUrl":null,"url":null,"abstract":"<p>Insufficient infrastructure for wastewater treatment stands as a critical global concern, profoundly impacting both the environment and public health. This issue is exacerbated by industrial effluents containing hazardous organic pollutants and dyes such as crystal violet (CV) and methyl orange (MO), posing significant environmental threats. This study introduces a novel approach utilizing chitosan microsphere-based iron–strontium–zinc oxide photocatalysts aimed at addressing the decontamination of these organic dyes. The synthesis of iron–strontium–zinc oxide was performed via co-precipitation method followed by its characterization using various techniques. The resulting CS-Fe<sub>2</sub>SrZnO<sub>4</sub> microspheres exhibited a sleek morphology with an average diameter of 917 μm, featuring the confirmed presence of iron, strontium, and zinc oxide as ascertained by EDX analysis. With a bandgap of 1.24 eV, this material showcased remarkable efficacy in degrading CV and MO dyes under solar light irradiation. Optimized conditions were identified to attain maximum degradation efficiency for both dyes. The findings reveal that the maximum degradation achieved for MO and CV was 94% and 98%, respectively, at the optimized conditions (time; 60 min, catalyst dosage; 0.1 g, concentration 20 ppm, pH; 6 for MO and 8 for CV). The statistical analysis was also performed which supported the obtained results. The kinetics study showed that the degradation followed pseudo-first order kinetics with R<sup>2</sup> value of 0.96. The current study has a great environmental impact as the degradation of hazardous dyes reduces the health related risks. To our best knowledge, this is the first report on the combination of ternary metal oxides combined with chitosan for the degradation of hazardous dyes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"109 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ternary Metal Oxide–Chitosan Hybrids for Efficient Photocatalytic Remediation of Organic Pollutants from Wastewater\",\"authors\":\"Liu Qirui, Muhammad Faisal, Sarmad Ali, Nisar Ali, Li Nian, Adnan Khan, Sumeet Malik, Muhammad Farhan, Nauman Ali, Umme Kalsoom\",\"doi\":\"10.1007/s11244-024-01942-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insufficient infrastructure for wastewater treatment stands as a critical global concern, profoundly impacting both the environment and public health. This issue is exacerbated by industrial effluents containing hazardous organic pollutants and dyes such as crystal violet (CV) and methyl orange (MO), posing significant environmental threats. This study introduces a novel approach utilizing chitosan microsphere-based iron–strontium–zinc oxide photocatalysts aimed at addressing the decontamination of these organic dyes. The synthesis of iron–strontium–zinc oxide was performed via co-precipitation method followed by its characterization using various techniques. The resulting CS-Fe<sub>2</sub>SrZnO<sub>4</sub> microspheres exhibited a sleek morphology with an average diameter of 917 μm, featuring the confirmed presence of iron, strontium, and zinc oxide as ascertained by EDX analysis. With a bandgap of 1.24 eV, this material showcased remarkable efficacy in degrading CV and MO dyes under solar light irradiation. Optimized conditions were identified to attain maximum degradation efficiency for both dyes. The findings reveal that the maximum degradation achieved for MO and CV was 94% and 98%, respectively, at the optimized conditions (time; 60 min, catalyst dosage; 0.1 g, concentration 20 ppm, pH; 6 for MO and 8 for CV). The statistical analysis was also performed which supported the obtained results. The kinetics study showed that the degradation followed pseudo-first order kinetics with R<sup>2</sup> value of 0.96. The current study has a great environmental impact as the degradation of hazardous dyes reduces the health related risks. To our best knowledge, this is the first report on the combination of ternary metal oxides combined with chitosan for the degradation of hazardous dyes.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-01942-8\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01942-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Ternary Metal Oxide–Chitosan Hybrids for Efficient Photocatalytic Remediation of Organic Pollutants from Wastewater
Insufficient infrastructure for wastewater treatment stands as a critical global concern, profoundly impacting both the environment and public health. This issue is exacerbated by industrial effluents containing hazardous organic pollutants and dyes such as crystal violet (CV) and methyl orange (MO), posing significant environmental threats. This study introduces a novel approach utilizing chitosan microsphere-based iron–strontium–zinc oxide photocatalysts aimed at addressing the decontamination of these organic dyes. The synthesis of iron–strontium–zinc oxide was performed via co-precipitation method followed by its characterization using various techniques. The resulting CS-Fe2SrZnO4 microspheres exhibited a sleek morphology with an average diameter of 917 μm, featuring the confirmed presence of iron, strontium, and zinc oxide as ascertained by EDX analysis. With a bandgap of 1.24 eV, this material showcased remarkable efficacy in degrading CV and MO dyes under solar light irradiation. Optimized conditions were identified to attain maximum degradation efficiency for both dyes. The findings reveal that the maximum degradation achieved for MO and CV was 94% and 98%, respectively, at the optimized conditions (time; 60 min, catalyst dosage; 0.1 g, concentration 20 ppm, pH; 6 for MO and 8 for CV). The statistical analysis was also performed which supported the obtained results. The kinetics study showed that the degradation followed pseudo-first order kinetics with R2 value of 0.96. The current study has a great environmental impact as the degradation of hazardous dyes reduces the health related risks. To our best knowledge, this is the first report on the combination of ternary metal oxides combined with chitosan for the degradation of hazardous dyes.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.