A. V. Emelyanov, K. E. Nikiruy, A. I. Iliasov, E. A. Tsyvkunova, I. A. Surazhevsky, V. A. Demin, Y. Lin, Y. Tao, V. V. Rylkov
{"title":"根据生物类似物 STDP 规则描述基于铌酸锂纳米层和(Co-Fe-B)х(铌酸锂)100-х 复合材料的可塑性晶闸管的紧凑模型","authors":"A. V. Emelyanov, K. E. Nikiruy, A. I. Iliasov, E. A. Tsyvkunova, I. A. Surazhevsky, V. A. Demin, Y. Lin, Y. Tao, V. V. Rylkov","doi":"10.1134/S2635167623601535","DOIUrl":null,"url":null,"abstract":"<div><p>А compact phenomenological model is proposed to describe the plasticity of memristive structures based on nanolayers of LiNbO<sub>3</sub> and (Co–Fe–B)<sub><i>x</i></sub>(LiNbO<sub>3</sub>)<sub>100–<i>x</i></sub> composite, taking into account the features of resistive switching of the structures and hopping electron transport in amorphous LiNbO<sub>3</sub>. The model well describes the current–voltage characteristics of memristors in a crossbar array, and the effective microscopic parameters found in the fitting of the current—voltage characteristics make it possible to predict the result of changes in the conductivity according to spike-timing-dependent plasticity (STDP), and in addition, the dependence of the STDP window on the initial conductivity of the memristor. The results obtained can be used in the development of algorithms for training spiking neuromorphic computing systems and identifying memristive STDP, which is effective for their implementation.</p></div>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"18 2 supplement","pages":"S421 - S426"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Model for Describing the Plasticity of Memristors Based on Nanolayers of LiNbO3 and (Co–Fe–B)х(LiNbO3)100–х Composite According to the Biosimilar STDP Rule\",\"authors\":\"A. V. Emelyanov, K. E. Nikiruy, A. I. Iliasov, E. A. Tsyvkunova, I. A. Surazhevsky, V. A. Demin, Y. Lin, Y. Tao, V. V. Rylkov\",\"doi\":\"10.1134/S2635167623601535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>А compact phenomenological model is proposed to describe the plasticity of memristive structures based on nanolayers of LiNbO<sub>3</sub> and (Co–Fe–B)<sub><i>x</i></sub>(LiNbO<sub>3</sub>)<sub>100–<i>x</i></sub> composite, taking into account the features of resistive switching of the structures and hopping electron transport in amorphous LiNbO<sub>3</sub>. The model well describes the current–voltage characteristics of memristors in a crossbar array, and the effective microscopic parameters found in the fitting of the current—voltage characteristics make it possible to predict the result of changes in the conductivity according to spike-timing-dependent plasticity (STDP), and in addition, the dependence of the STDP window on the initial conductivity of the memristor. The results obtained can be used in the development of algorithms for training spiking neuromorphic computing systems and identifying memristive STDP, which is effective for their implementation.</p></div>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"18 2 supplement\",\"pages\":\"S421 - S426\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167623601535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167623601535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Compact Model for Describing the Plasticity of Memristors Based on Nanolayers of LiNbO3 and (Co–Fe–B)х(LiNbO3)100–х Composite According to the Biosimilar STDP Rule
А compact phenomenological model is proposed to describe the plasticity of memristive structures based on nanolayers of LiNbO3 and (Co–Fe–B)x(LiNbO3)100–x composite, taking into account the features of resistive switching of the structures and hopping electron transport in amorphous LiNbO3. The model well describes the current–voltage characteristics of memristors in a crossbar array, and the effective microscopic parameters found in the fitting of the current—voltage characteristics make it possible to predict the result of changes in the conductivity according to spike-timing-dependent plasticity (STDP), and in addition, the dependence of the STDP window on the initial conductivity of the memristor. The results obtained can be used in the development of algorithms for training spiking neuromorphic computing systems and identifying memristive STDP, which is effective for their implementation.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.