使用传感器阵列对热声辐射进行相关测量

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Acoustical Physics Pub Date : 2024-05-07 DOI:10.1134/s1063771023601425
A. A. Anosov, N. V. Granovsky, R. V. Belyaev, A. V. Erofeev, A. G. Sanin, A. D. Mansfeld
{"title":"使用传感器阵列对热声辐射进行相关测量","authors":"A. A. Anosov, N. V. Granovsky, R. V. Belyaev, A. V. Erofeev, A. G. Sanin, A. D. Mansfeld","doi":"10.1134/s1063771023601425","DOIUrl":null,"url":null,"abstract":"<p>An array consisting of three sensors was used for correlation measurements of thermal acoustic radiation. For the first time, all cross-correlation functions were obtained for each pair of sensors. The measurements were carried out at two positions of the source (a heated narrow Teflon cylinder), the distance between which was equal to half the spatial period of the cross-correlation function of adjacent sensors. The measured correlation functions were in antiphase, which corresponds to the calculated correlation functions of thermal acoustic radiation. To pass from correlation functions to temperature distribution, spatial cross-correlation functions for adjacent and the outermost sensors in the array are summed. The correlation methodology makes it possible to significantly increase the spatial resolution of the method.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Measurements of Thermal Acoustic Radiation Using a Sensor Array\",\"authors\":\"A. A. Anosov, N. V. Granovsky, R. V. Belyaev, A. V. Erofeev, A. G. Sanin, A. D. Mansfeld\",\"doi\":\"10.1134/s1063771023601425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An array consisting of three sensors was used for correlation measurements of thermal acoustic radiation. For the first time, all cross-correlation functions were obtained for each pair of sensors. The measurements were carried out at two positions of the source (a heated narrow Teflon cylinder), the distance between which was equal to half the spatial period of the cross-correlation function of adjacent sensors. The measured correlation functions were in antiphase, which corresponds to the calculated correlation functions of thermal acoustic radiation. To pass from correlation functions to temperature distribution, spatial cross-correlation functions for adjacent and the outermost sensors in the array are summed. The correlation methodology makes it possible to significantly increase the spatial resolution of the method.</p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063771023601425\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063771023601425","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

由三个传感器组成的阵列用于热声辐射的相关测量。首次获得了每对传感器的所有交叉相关函数。测量在声源(一个加热的窄特氟隆圆柱体)的两个位置进行,两个位置之间的距离等于相邻传感器交叉相关函数空间周期的一半。测量到的相关函数是反相的,这与热声辐射相关函数的计算结果一致。从相关函数到温度分布,相邻传感器和阵列最外层传感器的空间交叉相关函数相加。相关方法可以显著提高该方法的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation Measurements of Thermal Acoustic Radiation Using a Sensor Array

An array consisting of three sensors was used for correlation measurements of thermal acoustic radiation. For the first time, all cross-correlation functions were obtained for each pair of sensors. The measurements were carried out at two positions of the source (a heated narrow Teflon cylinder), the distance between which was equal to half the spatial period of the cross-correlation function of adjacent sensors. The measured correlation functions were in antiphase, which corresponds to the calculated correlation functions of thermal acoustic radiation. To pass from correlation functions to temperature distribution, spatial cross-correlation functions for adjacent and the outermost sensors in the array are summed. The correlation methodology makes it possible to significantly increase the spatial resolution of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Peculiarities of Flexural Wave Propagation in a Notched Bar Interference of Echo Signals from Spherical Scatterers Located Near the Bottom Theoretical and Experimental Study of Diffraction by a Thin Cone Thermal Ablation of Biological Tissue by Sonicating Discrete Foci in a Specified Volume with a Single Wave Burst with Shocks On the Evolution of a System of Shock Waves Created by Engine Fan Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1