N. E. Zavyalova, M. T. Vasbieva, V. R. Yamaltdinova, I. V. Kazakova
{"title":"轮作作物对大气碳的积累以及施肥系统对种植草皮的土壤对有机碳积累的影响","authors":"N. E. Zavyalova, M. T. Vasbieva, V. R. Yamaltdinova, I. V. Kazakova","doi":"10.3103/s1068367423070273","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The study reports experimental data on the accumulation and loss of organic carbon in sod-podzol soil over six rotations of a long-term station experiment. It was found that, during photosynthesis, spring barley plants bound to organic compounds 2.84–3.25 t C/ha from the atmosphere (10.3–11.6 t CO<sub>2</sub>/ha) and meadow clover of the second year of rotation bound 4.23–5.19 t C/ha (15.1–18.6 t CO<sub>2</sub>/ha) over the growing season, depending on experimental variant. Cultivated crops sequestered from the atmosphere 82.28–99.31 t of CO<sub>2</sub>/ha or 22.4–27.1 t C/ha over a rotation of the eight-field crop rotation, depending on the soil fertilization system. Long-term use of cultivated land without fertilizers led to a decrease in carbon content in the soil by 13.5% in relation to the initial level. The soil of the station experiment was characterized by the maximum content and stock of organic carbon under saturation of tilled land with manure at a dose of 20 t/ha and an equivalent amount of NPK. Over six rotations, carbon content increased by 15% of the initial content in the 0–20 cm layer, while the carbon stock increased by 5 t/ha in this layer and by 32 t/ha in the 0–100 cm layer. Mean value of the carbon-protective capacity of the studied soil varied between 29 and 31 g/kg in the 0–20 cm layer regardless of the applied fertilization systems. The quantity and qualitative composition of biomass, entering the soil under different systems of fertilization, had a significant effect on the accumulation of organic carbon.</p>","PeriodicalId":21531,"journal":{"name":"Russian Agricultural Sciences","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation of Atmospheric Carbon by Crops in Rotation and the Effect of Fertilization Systems on the Accumulation of Organic Carbon by Cultivated Sod-Podzol Soil\",\"authors\":\"N. E. Zavyalova, M. T. Vasbieva, V. R. Yamaltdinova, I. V. Kazakova\",\"doi\":\"10.3103/s1068367423070273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The study reports experimental data on the accumulation and loss of organic carbon in sod-podzol soil over six rotations of a long-term station experiment. It was found that, during photosynthesis, spring barley plants bound to organic compounds 2.84–3.25 t C/ha from the atmosphere (10.3–11.6 t CO<sub>2</sub>/ha) and meadow clover of the second year of rotation bound 4.23–5.19 t C/ha (15.1–18.6 t CO<sub>2</sub>/ha) over the growing season, depending on experimental variant. Cultivated crops sequestered from the atmosphere 82.28–99.31 t of CO<sub>2</sub>/ha or 22.4–27.1 t C/ha over a rotation of the eight-field crop rotation, depending on the soil fertilization system. Long-term use of cultivated land without fertilizers led to a decrease in carbon content in the soil by 13.5% in relation to the initial level. The soil of the station experiment was characterized by the maximum content and stock of organic carbon under saturation of tilled land with manure at a dose of 20 t/ha and an equivalent amount of NPK. Over six rotations, carbon content increased by 15% of the initial content in the 0–20 cm layer, while the carbon stock increased by 5 t/ha in this layer and by 32 t/ha in the 0–100 cm layer. Mean value of the carbon-protective capacity of the studied soil varied between 29 and 31 g/kg in the 0–20 cm layer regardless of the applied fertilization systems. The quantity and qualitative composition of biomass, entering the soil under different systems of fertilization, had a significant effect on the accumulation of organic carbon.</p>\",\"PeriodicalId\":21531,\"journal\":{\"name\":\"Russian Agricultural Sciences\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Agricultural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068367423070273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068367423070273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accumulation of Atmospheric Carbon by Crops in Rotation and the Effect of Fertilization Systems on the Accumulation of Organic Carbon by Cultivated Sod-Podzol Soil
Abstract
The study reports experimental data on the accumulation and loss of organic carbon in sod-podzol soil over six rotations of a long-term station experiment. It was found that, during photosynthesis, spring barley plants bound to organic compounds 2.84–3.25 t C/ha from the atmosphere (10.3–11.6 t CO2/ha) and meadow clover of the second year of rotation bound 4.23–5.19 t C/ha (15.1–18.6 t CO2/ha) over the growing season, depending on experimental variant. Cultivated crops sequestered from the atmosphere 82.28–99.31 t of CO2/ha or 22.4–27.1 t C/ha over a rotation of the eight-field crop rotation, depending on the soil fertilization system. Long-term use of cultivated land without fertilizers led to a decrease in carbon content in the soil by 13.5% in relation to the initial level. The soil of the station experiment was characterized by the maximum content and stock of organic carbon under saturation of tilled land with manure at a dose of 20 t/ha and an equivalent amount of NPK. Over six rotations, carbon content increased by 15% of the initial content in the 0–20 cm layer, while the carbon stock increased by 5 t/ha in this layer and by 32 t/ha in the 0–100 cm layer. Mean value of the carbon-protective capacity of the studied soil varied between 29 and 31 g/kg in the 0–20 cm layer regardless of the applied fertilization systems. The quantity and qualitative composition of biomass, entering the soil under different systems of fertilization, had a significant effect on the accumulation of organic carbon.