C. Wade Ross, E. Louise Loudermilk, Joseph J. O’Brien, Steven A. Flanagan, Jennifer McDaniel, Doug P. Aubrey, Tripp Lowe, J. Kevin Hiers, Nicholas S. Skowronski
{"title":"通过激光雷达估算火灾频率对森林结构的影响","authors":"C. Wade Ross, E. Louise Loudermilk, Joseph J. O’Brien, Steven A. Flanagan, Jennifer McDaniel, Doug P. Aubrey, Tripp Lowe, J. Kevin Hiers, Nicholas S. Skowronski","doi":"10.1186/s42408-024-00279-7","DOIUrl":null,"url":null,"abstract":"Longleaf pine (Pinus palustris) ecosystems are recognized as biodiversity hotspots, and their sustainability is tightly coupled to a complex nexus of feedbacks between fire, composition, and structure. While previous research has demonstrated that frequent fire is often associated with higher levels of biodiversity, relationships between fire frequency and forest structure are more nuanced because structure can be difficult to measure and characterize. We expanded on this body of research by using lidar to characterize vegetation structure in response to fire frequency at a long-term prescribed-fire experiment. We asked (1) how does prescribed fire frequency affect structure and (2) how do structural metrics vary in the strength of their relationships with fire frequency. Our results indicated that forest structure varied significantly in response to fire frequency, with more frequent fire reducing vegetation structural complexity. Metrics that characterized the central tendency of vegetation and/or the variance of canopy-related properties were weakly to moderately correlated with prescribed fire frequency, while metrics that captured the vertical dispersion or variability of vegetation throughout the forest strata were moderately to strongly correlated with fire frequency. Of all the metrics evaluated, the understory complexity index had the strongest correlation with fire frequency and explained 88% of the structural variation in response to prescribed fire treatments. The findings presented in this study highlight the usefulness of lidar technology for characterizing forest structure and that structural complexity cannot be fully characterized by a single metric. Instead, a range of diverse metrics is required to refine scientific understanding of the feedbacks between fire, composition, and structure in support of longleaf pine sustainability. Furthermore, there is a need for further research to broaden structural assessments beyond the overstory and incorporate more understory components, particularly within the realm of prescribed fire science and land management.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lidar-derived estimates of forest structure in response to fire frequency\",\"authors\":\"C. Wade Ross, E. Louise Loudermilk, Joseph J. O’Brien, Steven A. Flanagan, Jennifer McDaniel, Doug P. Aubrey, Tripp Lowe, J. Kevin Hiers, Nicholas S. Skowronski\",\"doi\":\"10.1186/s42408-024-00279-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longleaf pine (Pinus palustris) ecosystems are recognized as biodiversity hotspots, and their sustainability is tightly coupled to a complex nexus of feedbacks between fire, composition, and structure. While previous research has demonstrated that frequent fire is often associated with higher levels of biodiversity, relationships between fire frequency and forest structure are more nuanced because structure can be difficult to measure and characterize. We expanded on this body of research by using lidar to characterize vegetation structure in response to fire frequency at a long-term prescribed-fire experiment. We asked (1) how does prescribed fire frequency affect structure and (2) how do structural metrics vary in the strength of their relationships with fire frequency. Our results indicated that forest structure varied significantly in response to fire frequency, with more frequent fire reducing vegetation structural complexity. Metrics that characterized the central tendency of vegetation and/or the variance of canopy-related properties were weakly to moderately correlated with prescribed fire frequency, while metrics that captured the vertical dispersion or variability of vegetation throughout the forest strata were moderately to strongly correlated with fire frequency. Of all the metrics evaluated, the understory complexity index had the strongest correlation with fire frequency and explained 88% of the structural variation in response to prescribed fire treatments. The findings presented in this study highlight the usefulness of lidar technology for characterizing forest structure and that structural complexity cannot be fully characterized by a single metric. Instead, a range of diverse metrics is required to refine scientific understanding of the feedbacks between fire, composition, and structure in support of longleaf pine sustainability. Furthermore, there is a need for further research to broaden structural assessments beyond the overstory and incorporate more understory components, particularly within the realm of prescribed fire science and land management.\",\"PeriodicalId\":12273,\"journal\":{\"name\":\"Fire Ecology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s42408-024-00279-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-024-00279-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Lidar-derived estimates of forest structure in response to fire frequency
Longleaf pine (Pinus palustris) ecosystems are recognized as biodiversity hotspots, and their sustainability is tightly coupled to a complex nexus of feedbacks between fire, composition, and structure. While previous research has demonstrated that frequent fire is often associated with higher levels of biodiversity, relationships between fire frequency and forest structure are more nuanced because structure can be difficult to measure and characterize. We expanded on this body of research by using lidar to characterize vegetation structure in response to fire frequency at a long-term prescribed-fire experiment. We asked (1) how does prescribed fire frequency affect structure and (2) how do structural metrics vary in the strength of their relationships with fire frequency. Our results indicated that forest structure varied significantly in response to fire frequency, with more frequent fire reducing vegetation structural complexity. Metrics that characterized the central tendency of vegetation and/or the variance of canopy-related properties were weakly to moderately correlated with prescribed fire frequency, while metrics that captured the vertical dispersion or variability of vegetation throughout the forest strata were moderately to strongly correlated with fire frequency. Of all the metrics evaluated, the understory complexity index had the strongest correlation with fire frequency and explained 88% of the structural variation in response to prescribed fire treatments. The findings presented in this study highlight the usefulness of lidar technology for characterizing forest structure and that structural complexity cannot be fully characterized by a single metric. Instead, a range of diverse metrics is required to refine scientific understanding of the feedbacks between fire, composition, and structure in support of longleaf pine sustainability. Furthermore, there is a need for further research to broaden structural assessments beyond the overstory and incorporate more understory components, particularly within the realm of prescribed fire science and land management.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.