剪切应力介导的血糖异常内皮细胞损伤修复微流体研究

Si-Yu Hu , Chun-Dong Xue , Yong-Jiang Li , Shen Li , Zheng-Nan Gao , Kai-Rong Qin
{"title":"剪切应力介导的血糖异常内皮细胞损伤修复微流体研究","authors":"Si-Yu Hu ,&nbsp;Chun-Dong Xue ,&nbsp;Yong-Jiang Li ,&nbsp;Shen Li ,&nbsp;Zheng-Nan Gao ,&nbsp;Kai-Rong Qin","doi":"10.1016/j.mbm.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><p>Dysglycemia causes arterial endothelial damage, which is an early critical event in vascular complications for diabetes patients. Physiologically, moderate shear stress (SS) helps maintain endothelial cell health and normal function. Reactive oxygen species (ROS) and calcium ions (Ca<sup>2+</sup>) signals are involved in dysglycemia-induced endothelial dysfunction and are also implicated in SS-mediated regulation of endothelial cell function. Therefore, it is urgent to establish <em>in vitro</em> models for studying endothelial biomechanics and mechanobiology, aiming to seek interventions that utilize appropriate SS to delay or reverse endothelial dysfunction. Microfluidic technology, as a novel approach, makes it possible to replicate blood glucose environment and accurate pulsatile SS <em>in vitro</em>. Here, we reviewed the progress of microfluidic systems used for SS-mediated repair of dysglycemia-induced endothelial cell damage (ECD), revealing the crucial roles of ROS and Ca<sup>2+</sup> during the processes. It holds significant implications for finding appropriate mechanical intervention methods, such as exercise training, to prevent and treat cardiovascular complications in diabetes.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000329/pdfft?md5=a518abb78cf0a5c00975a90358021bba&pid=1-s2.0-S2949907024000329-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage\",\"authors\":\"Si-Yu Hu ,&nbsp;Chun-Dong Xue ,&nbsp;Yong-Jiang Li ,&nbsp;Shen Li ,&nbsp;Zheng-Nan Gao ,&nbsp;Kai-Rong Qin\",\"doi\":\"10.1016/j.mbm.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dysglycemia causes arterial endothelial damage, which is an early critical event in vascular complications for diabetes patients. Physiologically, moderate shear stress (SS) helps maintain endothelial cell health and normal function. Reactive oxygen species (ROS) and calcium ions (Ca<sup>2+</sup>) signals are involved in dysglycemia-induced endothelial dysfunction and are also implicated in SS-mediated regulation of endothelial cell function. Therefore, it is urgent to establish <em>in vitro</em> models for studying endothelial biomechanics and mechanobiology, aiming to seek interventions that utilize appropriate SS to delay or reverse endothelial dysfunction. Microfluidic technology, as a novel approach, makes it possible to replicate blood glucose environment and accurate pulsatile SS <em>in vitro</em>. Here, we reviewed the progress of microfluidic systems used for SS-mediated repair of dysglycemia-induced endothelial cell damage (ECD), revealing the crucial roles of ROS and Ca<sup>2+</sup> during the processes. It holds significant implications for finding appropriate mechanical intervention methods, such as exercise training, to prevent and treat cardiovascular complications in diabetes.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000329/pdfft?md5=a518abb78cf0a5c00975a90358021bba&pid=1-s2.0-S2949907024000329-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖耐量异常会导致动脉内皮损伤,这是糖尿病患者血管并发症的早期关键事件。在生理学上,适度的剪切应力(SS)有助于维持内皮细胞的健康和正常功能。活性氧(ROS)和钙离子(Ca2+)信号参与了血糖异常引起的内皮功能障碍,也与 SS 介导的内皮细胞功能调节有关。因此,当务之急是建立研究内皮生物力学和机械生物学的体外模型,以寻求利用适当的 SS 来延缓或逆转内皮功能障碍的干预措施。微流控技术作为一种新方法,可以在体外复制血糖环境和准确的脉冲式 SS。在此,我们回顾了微流控系统用于 SS 介导的血糖异常诱导的内皮细胞损伤(ECD)修复的进展,揭示了 ROS 和 Ca2+ 在这一过程中的关键作用。这对寻找适当的机械干预方法(如运动训练)以预防和治疗糖尿病心血管并发症具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage

Dysglycemia causes arterial endothelial damage, which is an early critical event in vascular complications for diabetes patients. Physiologically, moderate shear stress (SS) helps maintain endothelial cell health and normal function. Reactive oxygen species (ROS) and calcium ions (Ca2+) signals are involved in dysglycemia-induced endothelial dysfunction and are also implicated in SS-mediated regulation of endothelial cell function. Therefore, it is urgent to establish in vitro models for studying endothelial biomechanics and mechanobiology, aiming to seek interventions that utilize appropriate SS to delay or reverse endothelial dysfunction. Microfluidic technology, as a novel approach, makes it possible to replicate blood glucose environment and accurate pulsatile SS in vitro. Here, we reviewed the progress of microfluidic systems used for SS-mediated repair of dysglycemia-induced endothelial cell damage (ECD), revealing the crucial roles of ROS and Ca2+ during the processes. It holds significant implications for finding appropriate mechanical intervention methods, such as exercise training, to prevent and treat cardiovascular complications in diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair Low-magnitude high-frequency vibration reduces prostate cancer growth and extravasation in vitro Application of biomechanics in tumor epigenetic research YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1