Rye Young Kim, Yoonji Joo, Eunji Ha, Haejin Hong, Chaewon Suh, Youngeun Shim, Hyeonji Lee, Yejin Kim, Jae-Hyoung Cho, Sujung Yoon, In Kyoon Lyoo
{"title":"2 型糖尿病患者大脑形态计量网络的变化及其与记忆功能障碍的关系","authors":"Rye Young Kim, Yoonji Joo, Eunji Ha, Haejin Hong, Chaewon Suh, Youngeun Shim, Hyeonji Lee, Yejin Kim, Jae-Hyoung Cho, Sujung Yoon, In Kyoon Lyoo","doi":"10.5607/en24005","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50). High-resolution T1-weighted magnetic resonance imaging data were subjected to independent component analysis to identify structurally significant components indicative of morphometric networks. Within these networks, the groups' gray matter volumes were compared, and distinctions in memory performance were assessed. In the T2DM group, the relationship between changes in gray matter volume within these networks and declines in memory performance was examined. Among the identified morphometric networks, the T2DM group exhibited reduced gray matter volumes in both the precuneus (Bonferroni-corrected p=0.003) and insular-opercular (Bonferroni-corrected p=0.024) networks relative to the control group. Patients with T2DM demonstrated significantly lower memory performance than the control group (p=0.001). In the T2DM group, reductions in gray matter volume in both the precuneus (<i>r</i>=0.316, p=0.001) and insular-opercular (<i>r</i>=0.199, p=0.047) networks were correlated with diminished memory performance. Our findings indicate that structural alterations in the precuneus and insular-opercular networks, along with memory dysfunction, can manifest within the first 5 years following a diagnosis of T2DM.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089400/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alterations in Brain Morphometric Networks and Their Relationship with Memory Dysfunction in Patients with Type 2 Diabetes Mellitus.\",\"authors\":\"Rye Young Kim, Yoonji Joo, Eunji Ha, Haejin Hong, Chaewon Suh, Youngeun Shim, Hyeonji Lee, Yejin Kim, Jae-Hyoung Cho, Sujung Yoon, In Kyoon Lyoo\",\"doi\":\"10.5607/en24005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50). High-resolution T1-weighted magnetic resonance imaging data were subjected to independent component analysis to identify structurally significant components indicative of morphometric networks. Within these networks, the groups' gray matter volumes were compared, and distinctions in memory performance were assessed. In the T2DM group, the relationship between changes in gray matter volume within these networks and declines in memory performance was examined. Among the identified morphometric networks, the T2DM group exhibited reduced gray matter volumes in both the precuneus (Bonferroni-corrected p=0.003) and insular-opercular (Bonferroni-corrected p=0.024) networks relative to the control group. Patients with T2DM demonstrated significantly lower memory performance than the control group (p=0.001). In the T2DM group, reductions in gray matter volume in both the precuneus (<i>r</i>=0.316, p=0.001) and insular-opercular (<i>r</i>=0.199, p=0.047) networks were correlated with diminished memory performance. Our findings indicate that structural alterations in the precuneus and insular-opercular networks, along with memory dysfunction, can manifest within the first 5 years following a diagnosis of T2DM.</p>\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089400/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en24005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en24005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Alterations in Brain Morphometric Networks and Their Relationship with Memory Dysfunction in Patients with Type 2 Diabetes Mellitus.
Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50). High-resolution T1-weighted magnetic resonance imaging data were subjected to independent component analysis to identify structurally significant components indicative of morphometric networks. Within these networks, the groups' gray matter volumes were compared, and distinctions in memory performance were assessed. In the T2DM group, the relationship between changes in gray matter volume within these networks and declines in memory performance was examined. Among the identified morphometric networks, the T2DM group exhibited reduced gray matter volumes in both the precuneus (Bonferroni-corrected p=0.003) and insular-opercular (Bonferroni-corrected p=0.024) networks relative to the control group. Patients with T2DM demonstrated significantly lower memory performance than the control group (p=0.001). In the T2DM group, reductions in gray matter volume in both the precuneus (r=0.316, p=0.001) and insular-opercular (r=0.199, p=0.047) networks were correlated with diminished memory performance. Our findings indicate that structural alterations in the precuneus and insular-opercular networks, along with memory dysfunction, can manifest within the first 5 years following a diagnosis of T2DM.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.