将校准误差纳入口语阅读流利度评分。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2024-05-10 DOI:10.1111/bmsp.12348
Xin Qiao, Akihito Kamata, Cornelis Potgieter
{"title":"将校准误差纳入口语阅读流利度评分。","authors":"Xin Qiao, Akihito Kamata, Cornelis Potgieter","doi":"10.1111/bmsp.12348","DOIUrl":null,"url":null,"abstract":"<p><p>Oral reading fluency (ORF) assessments are commonly used to screen at-risk readers and evaluate interventions' effectiveness as curriculum-based measurements. Similar to the standard practice in item response theory (IRT), calibrated passage parameter estimates are currently used as if they were population values in model-based ORF scoring. However, calibration errors that are unaccounted for may bias ORF score estimates and, in particular, lead to underestimated standard errors (SEs) of ORF scores. Therefore, we consider an approach that incorporates the calibration errors in latent variable scores. We further derive the SEs of ORF scores based on the delta method to incorporate the calibration uncertainty. We conduct a simulation study to evaluate the recovery of point estimates and SEs of latent variable scores and ORF scores in various simulated conditions. Results suggest that ignoring calibration errors leads to underestimated latent variable score SEs and ORF score SEs, especially when the calibration sample is small.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating calibration errors in oral reading fluency scoring.\",\"authors\":\"Xin Qiao, Akihito Kamata, Cornelis Potgieter\",\"doi\":\"10.1111/bmsp.12348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral reading fluency (ORF) assessments are commonly used to screen at-risk readers and evaluate interventions' effectiveness as curriculum-based measurements. Similar to the standard practice in item response theory (IRT), calibrated passage parameter estimates are currently used as if they were population values in model-based ORF scoring. However, calibration errors that are unaccounted for may bias ORF score estimates and, in particular, lead to underestimated standard errors (SEs) of ORF scores. Therefore, we consider an approach that incorporates the calibration errors in latent variable scores. We further derive the SEs of ORF scores based on the delta method to incorporate the calibration uncertainty. We conduct a simulation study to evaluate the recovery of point estimates and SEs of latent variable scores and ORF scores in various simulated conditions. Results suggest that ignoring calibration errors leads to underestimated latent variable score SEs and ORF score SEs, especially when the calibration sample is small.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12348\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12348","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

口语阅读流利度(ORF)评估通常用于筛选高危读者和评估干预措施的有效性,是以课程为基础的测量方法。与项目反应理论(IRT)中的标准做法类似,目前在基于模型的口语阅读流利度评分中,校准过的段落参数估计值被当作人口值使用。然而,未考虑的校准误差可能会使 ORF 分数估计值出现偏差,特别是会导致 ORF 分数的标准误差(SE)被低估。因此,我们考虑了一种将校准误差纳入潜在变量得分的方法。我们根据德尔塔法进一步推导 ORF 分数的 SE,以纳入校准的不确定性。我们进行了一项模拟研究,以评估在各种模拟条件下潜在变量得分和 ORF 分数的点估计值和 SE 的恢复情况。结果表明,忽略校准误差会导致低估潜变量得分 SE 和 ORF 分数 SE,尤其是当校准样本较小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating calibration errors in oral reading fluency scoring.

Oral reading fluency (ORF) assessments are commonly used to screen at-risk readers and evaluate interventions' effectiveness as curriculum-based measurements. Similar to the standard practice in item response theory (IRT), calibrated passage parameter estimates are currently used as if they were population values in model-based ORF scoring. However, calibration errors that are unaccounted for may bias ORF score estimates and, in particular, lead to underestimated standard errors (SEs) of ORF scores. Therefore, we consider an approach that incorporates the calibration errors in latent variable scores. We further derive the SEs of ORF scores based on the delta method to incorporate the calibration uncertainty. We conduct a simulation study to evaluate the recovery of point estimates and SEs of latent variable scores and ORF scores in various simulated conditions. Results suggest that ignoring calibration errors leads to underestimated latent variable score SEs and ORF score SEs, especially when the calibration sample is small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1