ProBAN:预测蛋白质-蛋白质复合物结合亲和力的神经网络算法。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-01 Epub Date: 2024-05-09 DOI:10.1002/prot.26700
Elizaveta Alexandrovna Bogdanova, Valery Nikolaevich Novoseletsky
{"title":"ProBAN:预测蛋白质-蛋白质复合物结合亲和力的神经网络算法。","authors":"Elizaveta Alexandrovna Bogdanova, Valery Nikolaevich Novoseletsky","doi":"10.1002/prot.26700","DOIUrl":null,"url":null,"abstract":"<p><p>Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes.\",\"authors\":\"Elizaveta Alexandrovna Bogdanova, Valery Nikolaevich Novoseletsky\",\"doi\":\"10.1002/prot.26700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26700\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26700","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

确定蛋白质-蛋白质和蛋白质-肽复合物的结合亲和力是一项具有挑战性的任务,直接影响到肽和蛋白质药物的开发。虽然已经提出了一些模型来预测解离常数和吉布斯自由能的值,但这些模型目前还无法进行高精度的稳定预测,特别是对于由两个以上分子组成的复合物。在这项工作中,我们提出了 ProBAN,一种基于深度卷积神经网络预测蛋白质-蛋白质复合物结合亲和力的新方法。预测是针对复合物的空间结构进行的,以 4D 张量的格式呈现,其中包括原子的位置及其参与蛋白质-蛋白质和蛋白质-肽复合物中各种相互作用的能力等信息。我们在内部测试数据集(包含由三个或更多分子组成的复合物)以及 PPI-Affinity 服务的外部测试中对模型的有效性进行了评估。结果,在所有分析模型中,我们成功地在这些数据集上实现了最佳预测质量:在内部测试中,Pearson 相关性 R = 0.6,MAE = 1.60;在外部测试中,R = 0.55,MAE = 1.75。开源代码、训练好的 ProBAN 模型和收集的数据集可通过以下链接免费获取:https://github.com/EABogdanova/ProBAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes.

Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1