发现 G 蛋白偶联受体靶向生物制剂的技术

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-05-09 DOI:10.1016/j.copbio.2024.103138
McKenna L Downey , Pamela Peralta-Yahya
{"title":"发现 G 蛋白偶联受体靶向生物制剂的技术","authors":"McKenna L Downey ,&nbsp;Pamela Peralta-Yahya","doi":"10.1016/j.copbio.2024.103138","DOIUrl":null,"url":null,"abstract":"<div><p>G protein–coupled receptors (GPCRs) are important pharmaceutical targets, working as entry points for signaling pathways involved in metabolic, neurological, and cardiovascular diseases. Although small molecules remain the major GPCR drug type, biologic therapeutics, such as peptides and antibodies, are increasingly found among clinical trials and Food and Drug Administration (FDA)-approved drugs. Here, we review state-of-the-art technologies for the engineering of biologics that target GPCRs, as well as proof-of-principle technologies that are ripe for this application. Looking ahead, inexpensive DNA synthesis will enable the routine generation of computationally predesigned libraries for use in display assays for the rapid discovery of GPCR binders. Advances in synthetic biology are enabling the increased throughput of functional GPCR assays to the point that they can be used to directly identify biologics that modulate GPCR activity. Finally, we give an overview of adjacent technologies that are ripe for application to discover biologics that target human GPCRs.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technologies for the discovery of G protein–coupled receptor–targeting biologics\",\"authors\":\"McKenna L Downey ,&nbsp;Pamela Peralta-Yahya\",\"doi\":\"10.1016/j.copbio.2024.103138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>G protein–coupled receptors (GPCRs) are important pharmaceutical targets, working as entry points for signaling pathways involved in metabolic, neurological, and cardiovascular diseases. Although small molecules remain the major GPCR drug type, biologic therapeutics, such as peptides and antibodies, are increasingly found among clinical trials and Food and Drug Administration (FDA)-approved drugs. Here, we review state-of-the-art technologies for the engineering of biologics that target GPCRs, as well as proof-of-principle technologies that are ripe for this application. Looking ahead, inexpensive DNA synthesis will enable the routine generation of computationally predesigned libraries for use in display assays for the rapid discovery of GPCR binders. Advances in synthetic biology are enabling the increased throughput of functional GPCR assays to the point that they can be used to directly identify biologics that modulate GPCR activity. Finally, we give an overview of adjacent technologies that are ripe for application to discover biologics that target human GPCRs.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000740\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000740","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

G 蛋白偶联受体(GPCR)是重要的药物靶点,是代谢、神经和心血管疾病信号通路的入口。尽管小分子药物仍然是 GPCR 的主要药物类型,但在临床试验和食品药品管理局 (FDA) 批准的药物中,肽和抗体等生物治疗药物也越来越多。在此,我们回顾了针对 GPCR 的生物制剂工程学的最新技术,以及成熟的原理验证技术。展望未来,廉价的 DNA 合成技术将使计算预设计文库的常规生成成为可能,这些文库可用于快速发现 GPCR 结合体的显示检测。合成生物学的进步使功能性 GPCR 检测的通量不断提高,以至于可以直接用于鉴定调节 GPCR 活性的生物制剂。最后,我们概述了邻近的技术,这些技术已经成熟,可以用于发现针对人类 GPCR 的生物制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technologies for the discovery of G protein–coupled receptor–targeting biologics

G protein–coupled receptors (GPCRs) are important pharmaceutical targets, working as entry points for signaling pathways involved in metabolic, neurological, and cardiovascular diseases. Although small molecules remain the major GPCR drug type, biologic therapeutics, such as peptides and antibodies, are increasingly found among clinical trials and Food and Drug Administration (FDA)-approved drugs. Here, we review state-of-the-art technologies for the engineering of biologics that target GPCRs, as well as proof-of-principle technologies that are ripe for this application. Looking ahead, inexpensive DNA synthesis will enable the routine generation of computationally predesigned libraries for use in display assays for the rapid discovery of GPCR binders. Advances in synthetic biology are enabling the increased throughput of functional GPCR assays to the point that they can be used to directly identify biologics that modulate GPCR activity. Finally, we give an overview of adjacent technologies that are ripe for application to discover biologics that target human GPCRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
Editorial Proteomics insights into the fungal-mediated bioremediation of environmental contaminants Methane to bioproducts: unraveling the potential of methanotrophs for biomanufacturing Thermodynamic tools for more efficient biotechnological processes: an example in poly-(3-hydroxybutyrate) production from carbon monoxide Editorial overview: Chemical biotechnology paving the way for a sustainable future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1