Thermodynamic tools for more efficient biotechnological processes: an example in poly-(3-hydroxybutyrate) production from carbon monoxide

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-10-01 DOI:10.1016/j.copbio.2024.103212
Karel Olavarria , Diana Z Sousa
{"title":"Thermodynamic tools for more efficient biotechnological processes: an example in poly-(3-hydroxybutyrate) production from carbon monoxide","authors":"Karel Olavarria ,&nbsp;Diana Z Sousa","doi":"10.1016/j.copbio.2024.103212","DOIUrl":null,"url":null,"abstract":"<div><div>Modern biotechnology requires the integration of several disciplines, with thermodynamics being a crucial one. Experimental approaches frequently used in biotechnology, such as rewiring of metabolic networks or culturing of micro-organisms in engineered environments, can benefit from the application of thermodynamic tools. In this paper, we provide an overview of several thermodynamic tools that are useful for the design and optimization of biotechnological processes, and we demonstrate their potential application in the production of poly-(3-hydroxybutyrate) (PHB) from carbon monoxide (CO). We discuss how these tools can aid in the design of metabolic engineering strategies, the calculation of expected yields, the assessment of the thermodynamic feasibility of the targeted conversions, the identification of potential thermodynamic bottlenecks, and the selection of genetic engineering targets. Although we illustrate these tools using the specific example of PHB production from CO, they can be applied to other substrates and products.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103212"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern biotechnology requires the integration of several disciplines, with thermodynamics being a crucial one. Experimental approaches frequently used in biotechnology, such as rewiring of metabolic networks or culturing of micro-organisms in engineered environments, can benefit from the application of thermodynamic tools. In this paper, we provide an overview of several thermodynamic tools that are useful for the design and optimization of biotechnological processes, and we demonstrate their potential application in the production of poly-(3-hydroxybutyrate) (PHB) from carbon monoxide (CO). We discuss how these tools can aid in the design of metabolic engineering strategies, the calculation of expected yields, the assessment of the thermodynamic feasibility of the targeted conversions, the identification of potential thermodynamic bottlenecks, and the selection of genetic engineering targets. Although we illustrate these tools using the specific example of PHB production from CO, they can be applied to other substrates and products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高生物技术工艺效率的热力学工具:以一氧化碳生产聚(3-羟基丁酸)为例。
现代生物技术需要整合多个学科,其中热力学是一个重要学科。生物技术中经常使用的实验方法,如重新连接代谢网络或在工程环境中培养微生物,都可以从热力学工具的应用中获益。本文概述了几种有助于设计和优化生物技术过程的热力学工具,并展示了这些工具在利用一氧化碳(CO)生产聚-(3-羟基丁酸)(PHB)过程中的潜在应用。我们讨论了这些工具如何帮助设计代谢工程策略、计算预期产量、评估目标转化的热力学可行性、识别潜在的热力学瓶颈以及选择基因工程目标。虽然我们使用从 CO 生产 PHB 的具体实例来说明这些工具,但它们也可应用于其他底物和产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
Toward a circular nitrogen bioeconomy: integrating nitrogen bioconcentration, separations, and high-value products for nitrogen recovery Tissue engineering in the agri-food industry: current status, socio-economic overview and regulatory compliance A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1