{"title":"利用环境指数和多元统计方法评估淡水表层沉积物中的有毒金属污染 - 系统综述","authors":"Oluwafemi Soetan , Michael Viteritto , Yu Qian , Huan Feng","doi":"10.1016/j.enmm.2024.100961","DOIUrl":null,"url":null,"abstract":"<div><p>Surface sediments form an integral component of freshwater ecosystems and they are a major sink-and-source for toxic pollutants, providing a reliable indication of a water body’s integrity. Distinct freshwater sediment investigations have informed the conclusions made about the ecological and pollution status of aquatic systems worldwide, but a widespread evaluation of the global status of freshwater sediments is lacking. From our perspective, an extensive environmental analysis of the available published data can address this need and improve our wholesome understanding of toxic metal impacts on global freshwater systems. Thus, surface sediment metal data collected from 149 freshwater sites in 32 countries were systematically analyzed using standard environmental indices (e.g. geoaccumulation index, modified hazard quotient, enrichment factor, etc.) and multivariate statistical methods (MSA). Average concentrations of all the metals except cobalt and zinc exceeded the recommended limits. Arsenic, cadmium, and mercury registered the highest frequency of severe pollution impacts on 29 – 69 % of the sites. 4 to 31 % of the studied sites recorded considerable to severe aquatic biota risk majorly from arsenic, cadmium, chromium, and nickel while 65 % of the sites recorded severe ecological risk (CSI > 5, RI ∼ 600). A high linear correlation with low ordination stress (R<sup>2</sup> = 0.93, Stress = 0.023) from non-metric multidimensional scaling agreed with the Pearson correlation analysis results, while principal component analysis revealed four major components that explained 89 % of the data variance. Source enrichment investigation indicates that pollution is a result of geogenic and anthropogenic contributions. The common anthropogenic sources among study sites include industrial and municipal wastewater and sewage, agriculture, surface runoff, fossil fuel emissions, and mining activities. The study can serve as a reference for future pollution studies, create extensive awareness of the dire ecological status of freshwater systems, and ultimately elicit site-specific remediation and mitigation action plans from policymakers.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100961"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of toxic metal pollution in freshwater surficial sediments using environmental indices and multivariate statistical approaches – A systematic review\",\"authors\":\"Oluwafemi Soetan , Michael Viteritto , Yu Qian , Huan Feng\",\"doi\":\"10.1016/j.enmm.2024.100961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface sediments form an integral component of freshwater ecosystems and they are a major sink-and-source for toxic pollutants, providing a reliable indication of a water body’s integrity. Distinct freshwater sediment investigations have informed the conclusions made about the ecological and pollution status of aquatic systems worldwide, but a widespread evaluation of the global status of freshwater sediments is lacking. From our perspective, an extensive environmental analysis of the available published data can address this need and improve our wholesome understanding of toxic metal impacts on global freshwater systems. Thus, surface sediment metal data collected from 149 freshwater sites in 32 countries were systematically analyzed using standard environmental indices (e.g. geoaccumulation index, modified hazard quotient, enrichment factor, etc.) and multivariate statistical methods (MSA). Average concentrations of all the metals except cobalt and zinc exceeded the recommended limits. Arsenic, cadmium, and mercury registered the highest frequency of severe pollution impacts on 29 – 69 % of the sites. 4 to 31 % of the studied sites recorded considerable to severe aquatic biota risk majorly from arsenic, cadmium, chromium, and nickel while 65 % of the sites recorded severe ecological risk (CSI > 5, RI ∼ 600). A high linear correlation with low ordination stress (R<sup>2</sup> = 0.93, Stress = 0.023) from non-metric multidimensional scaling agreed with the Pearson correlation analysis results, while principal component analysis revealed four major components that explained 89 % of the data variance. Source enrichment investigation indicates that pollution is a result of geogenic and anthropogenic contributions. The common anthropogenic sources among study sites include industrial and municipal wastewater and sewage, agriculture, surface runoff, fossil fuel emissions, and mining activities. The study can serve as a reference for future pollution studies, create extensive awareness of the dire ecological status of freshwater systems, and ultimately elicit site-specific remediation and mitigation action plans from policymakers.</p></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"22 \",\"pages\":\"Article 100961\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224000497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Evaluation of toxic metal pollution in freshwater surficial sediments using environmental indices and multivariate statistical approaches – A systematic review
Surface sediments form an integral component of freshwater ecosystems and they are a major sink-and-source for toxic pollutants, providing a reliable indication of a water body’s integrity. Distinct freshwater sediment investigations have informed the conclusions made about the ecological and pollution status of aquatic systems worldwide, but a widespread evaluation of the global status of freshwater sediments is lacking. From our perspective, an extensive environmental analysis of the available published data can address this need and improve our wholesome understanding of toxic metal impacts on global freshwater systems. Thus, surface sediment metal data collected from 149 freshwater sites in 32 countries were systematically analyzed using standard environmental indices (e.g. geoaccumulation index, modified hazard quotient, enrichment factor, etc.) and multivariate statistical methods (MSA). Average concentrations of all the metals except cobalt and zinc exceeded the recommended limits. Arsenic, cadmium, and mercury registered the highest frequency of severe pollution impacts on 29 – 69 % of the sites. 4 to 31 % of the studied sites recorded considerable to severe aquatic biota risk majorly from arsenic, cadmium, chromium, and nickel while 65 % of the sites recorded severe ecological risk (CSI > 5, RI ∼ 600). A high linear correlation with low ordination stress (R2 = 0.93, Stress = 0.023) from non-metric multidimensional scaling agreed with the Pearson correlation analysis results, while principal component analysis revealed four major components that explained 89 % of the data variance. Source enrichment investigation indicates that pollution is a result of geogenic and anthropogenic contributions. The common anthropogenic sources among study sites include industrial and municipal wastewater and sewage, agriculture, surface runoff, fossil fuel emissions, and mining activities. The study can serve as a reference for future pollution studies, create extensive awareness of the dire ecological status of freshwater systems, and ultimately elicit site-specific remediation and mitigation action plans from policymakers.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation