基于掺杂磺化氧化石墨烯的三元生态聚合物的新型水凝胶吸附剂的吸附和抗菌研究,这种新型水凝胶吸附剂是利用回收的塑料废弃物开发的

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-01 DOI:10.1016/j.jconhyd.2024.104362
Marwa H. Gouda , M.M. Khowdiary , Hind Alsnani , N. Roushdy , M. Elsayed Youssef , Mohamed Elnouby , Noha A. Elessawy
{"title":"基于掺杂磺化氧化石墨烯的三元生态聚合物的新型水凝胶吸附剂的吸附和抗菌研究,这种新型水凝胶吸附剂是利用回收的塑料废弃物开发的","authors":"Marwa H. Gouda ,&nbsp;M.M. Khowdiary ,&nbsp;Hind Alsnani ,&nbsp;N. Roushdy ,&nbsp;M. Elsayed Youssef ,&nbsp;Mohamed Elnouby ,&nbsp;Noha A. Elessawy","doi":"10.1016/j.jconhyd.2024.104362","DOIUrl":null,"url":null,"abstract":"<div><p>A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1–3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g<sup>−1</sup> for MB and 654 mg g<sup>−1</sup> for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste\",\"authors\":\"Marwa H. Gouda ,&nbsp;M.M. Khowdiary ,&nbsp;Hind Alsnani ,&nbsp;N. Roushdy ,&nbsp;M. Elsayed Youssef ,&nbsp;Mohamed Elnouby ,&nbsp;Noha A. Elessawy\",\"doi\":\"10.1016/j.jconhyd.2024.104362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1–3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g<sup>−1</sup> for MB and 654 mg g<sup>−1</sup> for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000664\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000664","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用聚(乙烯醇)(PVA)、异卡拉胶(IC)和聚(乙烯基吡咯烷酮)(PVP)合成了一种新型三元共混聚合物,该聚合物由成本低、易获得的聚合物组成。利用回收的饮用水瓶制备的磺化氧化石墨烯(SGO)作为掺杂剂。聚合物基质中的掺杂量各不相同(1-3 wt%)。研究人员将生成的水凝胶薄膜作为一种潜在的吸附剂水凝胶薄膜,用于去除水溶液中的亚甲基蓝(MB)和硫酸庆大霉素(GMS)抗生素。实验结果表明,SGO 的存在大大提高了 PVA/IC/PVP 水凝胶薄膜的吸附效率。抗菌测试表明,PVA/IC/PVP-3% SGO 水凝胶薄膜对所有受测病原菌的活性最强。然而,对 MB 和 GMS 的吸附结果表明,添加 3 wt% SGO 后,与未掺杂的 PVA/IC/PVP 水凝胶薄膜相比,去除率提高了两倍。此外,还利用响应面方法学(RSM)模型研究并优化了几个操作参数,包括时间、溶液的 pH 值和初始污染物浓度。伪二阶动力学模型更好地描述了吸附动力学。含有 3 wt% SGO 的复合薄膜对 MB 和 GMS 的最大吸附容量分别为 606 mg g-1 和 654 mg g-1。所生成的纳米复合水凝胶薄膜在水净化系统中的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste

A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1–3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g−1 for MB and 654 mg g−1 for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1