{"title":"将工业废气中的一氧化碳转化为甲酸盐的酶法","authors":"","doi":"10.1038/s44286-024-00070-0","DOIUrl":null,"url":null,"abstract":"Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"338-339"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic method for the conversion of carbon monoxide from industrial off-gases into formate\",\"authors\":\"\",\"doi\":\"10.1038/s44286-024-00070-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 5\",\"pages\":\"338-339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00070-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00070-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enzymatic method for the conversion of carbon monoxide from industrial off-gases into formate
Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.