{"title":"在信息整合分类过程中,尾状体尾部对收益和损失反馈都很敏感。","authors":"Zhiya Liu , Lixue Cai , Chen Liu , Carol A. Seger","doi":"10.1016/j.bandc.2024.106166","DOIUrl":null,"url":null,"abstract":"<div><p>Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"178 ","pages":"Article 106166"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The tail of the caudate is sensitive to both gain and loss feedback during information integration categorization\",\"authors\":\"Zhiya Liu , Lixue Cai , Chen Liu , Carol A. Seger\",\"doi\":\"10.1016/j.bandc.2024.106166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.</p></div>\",\"PeriodicalId\":55331,\"journal\":{\"name\":\"Brain and Cognition\",\"volume\":\"178 \",\"pages\":\"Article 106166\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278262624000435\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262624000435","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The tail of the caudate is sensitive to both gain and loss feedback during information integration categorization
Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.